Learning Image Profile Enhancement and Denoising Statistics Priors for Single-Image Super-Resolution

被引:14
|
作者
Ren, Chao [1 ]
He, Xiaohai [1 ]
Pu, Yifei [2 ]
Nguyen, Truong Q. [3 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[3] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
基金
中国国家自然科学基金;
关键词
Image reconstruction; Noise reduction; Optimization; Image edge detection; Image resolution; Degradation; Image restoration; Deep convolutional neural networks (CNNs); denoising statistics prior (DSP); profile enhancement prior (PEP); split Bregman iteration (SBI); super-resolution (SR); INTERPOLATION; AUTOENCODER;
D O I
10.1109/TCYB.2019.2933257
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Single-image super-resolution (SR) has been widely used in computer vision applications. The reconstruction-based SR methods are mainly based on certain prior terms to regularize the SR problem. However, it is very challenging to further improve the SR performance by the conventional design of explicit prior terms. Because of the powerful learning ability, deep convolutional neural networks (CNNs) have been widely used in single-image SR task. However, it is difficult to achieve further improvement by only designing the network architecture. In addition, most existing deep CNN-based SR methods learn a nonlinear mapping function to directly map low-resolution (LR) images to desirable high-resolution (HR) images, ignoring the observation models of input images. Inspired by the split Bregman iteration (SBI) algorithm, which is a powerful technique for solving the constrained optimization problems, the original SR problem is divided into two subproblems: 1) inversion subproblem and 2) denoising subproblem. Since the inversion subproblem can be regarded as an inversion step to reconstruct an intermediate HR image with sharper edges and finer structures, we propose to use deep CNN to capture low-level explicit image profile enhancement prior (PEP). Since the denoising subproblem aims to remove the noise in the intermediate image, we adopt a simple and effective denoising network to learn implicit image denoising statistics prior (DSP). Furthermore, the penalty parameter in SBI is adaptively tuned during the iterations for better performance. Finally, we also prove the convergence of our method. Thus, the deep CNNs are exploited to capture both implicit and explicit image statistics priors. Due to SBI, the SR observation model is also leveraged. Consequently, it bridges between two popular SR approaches: 1) learning-based method and 2) reconstruction-based method. Experimental results show that the proposed method achieves the state-of-the-art SR results.
引用
收藏
页码:3535 / 3548
页数:14
相关论文
共 50 条
  • [31] Multilevel and Multiscale Network for Single-Image Super-Resolution
    Yang, Yong
    Zhang, Dongyang
    Huang, Shuying
    Wu, Jiajun
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (12) : 1877 - 1881
  • [32] Single-Image Super-Resolution Using Multihypothesis Prediction
    Chen, Chen
    Fowler, James E.
    2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 608 - 612
  • [33] Rectified Binary Network for Single-Image Super-Resolution
    Xin, Jingwei
    Wang, Nannan
    Jiang, Xinrui
    Li, Jie
    Wang, Xiaoyu
    Gao, Xinbo
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [34] Improving Single-Image Super-Resolution with Dilated Attention
    Zhang, Xinyu
    Cheng, Boyuan
    Yang, Xiaosong
    Xiao, Zhidong
    Zhang, Jianjun
    You, Lihua
    ELECTRONICS, 2024, 13 (12)
  • [35] Collaborative Representation Cascade for Single-Image Super-Resolution
    Zhang, Yongbing
    Zhang, Yulun
    Zhang, Jian
    Xu, Dong
    Fu, Yun
    Wang, Yisen
    Ji, Xiangyang
    Dai, Qionghai
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (05): : 845 - 860
  • [36] FAST SINGLE-IMAGE SUPER-RESOLUTION WITH FILTER SELECTION
    Salvador, Jordi
    Perez-Pellitero, Eduardo
    Kochale, Axel
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 640 - 644
  • [37] An adaptive regression based single-image super-resolution
    Hou, Mingzheng
    Feng, Ziliang
    Wang, Haobo
    Shen, Zhiwei
    Li, Sheng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (20) : 28231 - 28248
  • [38] LOCAL OPERATOR ESTIMATION FOR SINGLE-IMAGE SUPER-RESOLUTION
    Tang, Yi
    Chen, Hong
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2015, : 39 - 44
  • [39] An adaptive regression based single-image super-resolution
    Mingzheng Hou
    Ziliang Feng
    Haobo Wang
    Zhiwei Shen
    Sheng Li
    Multimedia Tools and Applications, 2022, 81 : 28231 - 28248
  • [40] Single-Image Super-Resolution Challenges: A Brief Review
    Ye, Shutong
    Zhao, Shengyu
    Hu, Yaocong
    Xie, Chao
    ELECTRONICS, 2023, 12 (13)