Learning Image Profile Enhancement and Denoising Statistics Priors for Single-Image Super-Resolution

被引:13
|
作者
Ren, Chao [1 ]
He, Xiaohai [1 ]
Pu, Yifei [2 ]
Nguyen, Truong Q. [3 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[3] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
基金
中国国家自然科学基金;
关键词
Image reconstruction; Noise reduction; Optimization; Image edge detection; Image resolution; Degradation; Image restoration; Deep convolutional neural networks (CNNs); denoising statistics prior (DSP); profile enhancement prior (PEP); split Bregman iteration (SBI); super-resolution (SR); INTERPOLATION; AUTOENCODER;
D O I
10.1109/TCYB.2019.2933257
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Single-image super-resolution (SR) has been widely used in computer vision applications. The reconstruction-based SR methods are mainly based on certain prior terms to regularize the SR problem. However, it is very challenging to further improve the SR performance by the conventional design of explicit prior terms. Because of the powerful learning ability, deep convolutional neural networks (CNNs) have been widely used in single-image SR task. However, it is difficult to achieve further improvement by only designing the network architecture. In addition, most existing deep CNN-based SR methods learn a nonlinear mapping function to directly map low-resolution (LR) images to desirable high-resolution (HR) images, ignoring the observation models of input images. Inspired by the split Bregman iteration (SBI) algorithm, which is a powerful technique for solving the constrained optimization problems, the original SR problem is divided into two subproblems: 1) inversion subproblem and 2) denoising subproblem. Since the inversion subproblem can be regarded as an inversion step to reconstruct an intermediate HR image with sharper edges and finer structures, we propose to use deep CNN to capture low-level explicit image profile enhancement prior (PEP). Since the denoising subproblem aims to remove the noise in the intermediate image, we adopt a simple and effective denoising network to learn implicit image denoising statistics prior (DSP). Furthermore, the penalty parameter in SBI is adaptively tuned during the iterations for better performance. Finally, we also prove the convergence of our method. Thus, the deep CNNs are exploited to capture both implicit and explicit image statistics priors. Due to SBI, the SR observation model is also leveraged. Consequently, it bridges between two popular SR approaches: 1) learning-based method and 2) reconstruction-based method. Experimental results show that the proposed method achieves the state-of-the-art SR results.
引用
收藏
页码:3535 / 3548
页数:14
相关论文
共 50 条
  • [1] Single-image super-resolution via local learning
    Yi Tang
    Pingkun Yan
    Yuan Yuan
    Xuelong Li
    International Journal of Machine Learning and Cybernetics, 2011, 2 : 15 - 23
  • [2] EXTERNAL AND INTERNAL LEARNING FOR SINGLE-IMAGE SUPER-RESOLUTION
    Wang, Shuang
    Lin, Shaopeng
    Liang, Xuefeng
    Yue, Bo
    Jiao, Licheng
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 128 - 132
  • [3] Single-image super-resolution via local learning
    Tang, Yi
    Yan, Pingkun
    Yuan, Yuan
    Li, Xuelong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2011, 2 (01) : 15 - 23
  • [4] Learning multi-denoising autoencoding priors for image super-resolution
    Wang, Yankun
    Liu, Qiegen
    Zhou, Huilin
    Wang, Yuhao
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 57 : 152 - 162
  • [5] Single-Image Super-Resolution: A Survey
    Yao, Tingting
    Luo, Yu
    Chen, Yantong
    Yang, Dongqiao
    Zhao, Lei
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, CSPS 2018, VOL II: SIGNAL PROCESSING, 2020, 516 : 119 - 125
  • [6] Single-Image Super-Resolution: A Benchmark
    Yang, Chih-Yuan
    Ma, Chao
    Yang, Ming-Hsuan
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 372 - 386
  • [7] Deep Hyperspectral Prior: Single-Image Denoising, Inpainting, Super-Resolution
    Sidorov, Oleksii
    Hardeberg, Jon
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3844 - 3851
  • [8] Unified Single-Image and Video Super-Resolution via Denoising Algorithms
    Brifman A.
    Romano Y.
    Elad M.
    IEEE Transactions on Image Processing, 2019, 28 (12) : 6063 - 6076
  • [9] Texture enhancement for improving single-image super-resolution performance
    Yoo, Seok Bong
    Choi, Kyuha
    Jeon, Young Woo
    Ra, Jong Beom
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2016, 46 : 29 - 39
  • [10] A Conspectus of Deep Learning Techniques for Single-Image Super-Resolution
    Pandey, Garima
    Ghanekar, Umesh
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (01) : 11 - 32