A threshold estimation problem for processes with hysteresis

被引:4
|
作者
Freidlin, M [1 ]
Pfeiffer, R [1 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
hysteresis; stochastic processes; threshold estimation; maximum likelihood method; asymptotic properties; nonregular asymptotics;
D O I
10.1016/S0167-7152(97)00080-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a system with hysteresis: the motion of a particle is governed by one of two stochastic differential equations depending on which of two thresholds 0 and x(1),x(1)>0 was crossed last. Using observations of the process over a fixed time interval we construct the maximum likelihood estimator for the unknown threshold x(1). A close connection to the order statistics allows to calculate the asymptotic characteristics of the estimator. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:337 / 347
页数:11
相关论文
共 50 条
  • [21] Threshold Models for Lévy Processes and Approximate Maximum Likelihood Estimation
    Tsai, Henghsiu
    Nikitin, A. V.
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 2024, 60 (02) : 261 - 267
  • [22] Gaussian Processes for Hearing Threshold Estimation Using Auditory Brainstem Responses
    Chesnaye, M. A.
    Simpson, D. M.
    Schlittenlacher, J.
    Bell, S. L.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2024, 71 (03) : 803 - 819
  • [23] Optimal iterative threshold-kernel estimation of jump diffusion processes
    Figueroa-Lopez, Jose E.
    Li, Cheng
    Nisen, Jeffrey
    [J]. STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (03) : 517 - 552
  • [24] Optimal iterative threshold-kernel estimation of jump diffusion processes
    José E. Figueroa-López
    Cheng Li
    Jeffrey Nisen
    [J]. Statistical Inference for Stochastic Processes, 2020, 23 : 517 - 552
  • [25] An extension of cusp estimation problem in ergodic diffusion processes
    Fujii, Takayuki
    [J]. STATISTICS & PROBABILITY LETTERS, 2010, 80 (9-10) : 779 - 783
  • [26] Remarks on Estimation Problem for Stationary Processes in Continuous Time
    Youri Davydov
    [J]. Statistical Inference for Stochastic Processes, 2001, 4 (1) : 1 - 15
  • [27] Efficient estimation in semiparametric self-exciting threshold INAR processes
    Bentarzi, Mohamed
    Sadoun, Mohamed
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (06) : 2592 - 2614
  • [28] Parameter estimation of autoregressive processes by solving eigenvalue problem
    Jin, CZ
    Jia, LJ
    Yang, ZJ
    Wada, K
    [J]. 2002 IEEE REGION 10 CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND POWER ENGINEERING, VOLS I-III, PROCEEDINGS, 2002, : 1265 - 1268
  • [29] Adaptive Threshold Parameter Estimation with Recursive Differential Grouping for Problem Decomposition
    Sun, Yuan
    Omidvar, Mohammad Nabi
    Kirley, Michael
    Li, Xiaodong
    [J]. GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 889 - 896
  • [30] ON PROBLEM OF HYSTERESIS IN PSYCHOPHYSICS
    EISLER, H
    OTTANDER, C
    [J]. JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 1963, 65 (06): : 530 - &