Hollow core-shell structured Si@NiAl-LDH composite as high-performance anode material in lithium-ion batteries

被引:29
|
作者
Li, Qiongguang [1 ,2 ]
Wang, Yanhong [2 ,3 ]
Lu, Bin [1 ,2 ]
Yu, Jing [2 ]
Yuan, Menglei [1 ,2 ]
Tan, Qiangqiang [2 ,3 ]
Zhong, Ziyi [4 ,5 ]
Su, Fabing [2 ,3 ,6 ]
机构
[1] Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Inst Proc Engn, CAS Key Lab Green Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China
[3] Zhongke Langfang Inst Proc Engn, Langfang Econ & Tech Dev Zone, Fenghua Rd 1, Langfang 065001, Hebei, Peoples R China
[4] GTIIT, Coll Engn, 241 Daxue Rd, Jinping Dist 515063, Shantou, Peoples R China
[5] Technion Israel Inst Technol IIT, IL-32000 Haifa, Israel
[6] Shenyang Univ Chem Technol, Inst Ind Chem & Energy Technol, Shenyang 110142, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
hollow core-shell structure; Si@NiAl-LDH; Hybrid composites; Pseudocapacitance; Anode; Lithium-ion batteries; LAYERED DOUBLE HYDROXIDE; ELECTROCHEMICAL ENERGY-STORAGE; TIO2; ANATASE; CARBON; FABRICATION; NANOCOMPOSITE; INTERPHASE; CATALYST; SPHERES; DESIGN;
D O I
10.1016/j.electacta.2019.135331
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Vast volume expansion of Si-based materials severely deteriorates the electrochemical performance of lithium-ion batteries (LIBs). To overcome this problem, we designed and synthesized Si@NiAl-LDH (layered double hydroxide) hybrid composites with the unique hollow core-shell structure via a reprecipitation and in situ growth process. In principle, the core of Si nanoparticles (Si NPs) can contribute to a high Li-storage capacity, the void space between the shell of LDH and the Si-core can effectively tolerate the volume expansion of Si NPs, and the shell can maintain the structural integrity and contribute to the electrochemical performance as well. As demonstrated, when used as the anode materials of LIBs, Si@NiAl-LDH exhibited much enhanced electrochemical performance as compared with the LDHs. The Si@NiAl-LDH electrode had a reversible capacity of 534 mAhg(-1) after 60 cycles at 50 mAg(-1) while that of NiAl-LDH was 343 mAhg(-1) only. Regarding the rate performance, the Si@NiAl-LDH electrode could revert to 565 mAhg(-1) after a rate test, while that of NiAl-LDH electrode was 353 mAhg(-1) only. Obviously, the obtained clear structure-property relationship of the anode materials will be very conducive to the design and synthesis of the high-performance next-generation materials for energy storage and conversion. (c) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Optimized Porous Si/SiC Composite Spheres as High-Performance Anode Material for Lithium-Ion Batteries
    Zhang, Jiaming
    Tang, Jingjing
    Zhou, Xiangyang
    Jia, Ming
    Ren, Yongpeng
    Jiang, Min
    Hu, Tingjie
    Yang, Juan
    CHEMELECTROCHEM, 2019, 6 (02): : 450 - 455
  • [22] Spherical Gr/Si/GO/C Composite as High-Performance Anode Material for Lithium-Ion Batteries
    Huang, Yuehua
    Peng, Jiao
    Luo, Jing
    Li, Wangwu
    Wu, Zhenyu
    Shi, Minhao
    Li, Xingxing
    Li, Neng
    Chang, Baobao
    Wang, Xianyou
    ENERGY & FUELS, 2020, 34 (06) : 7639 - 7647
  • [23] Facile Synthesis of Core-Shell Structured SiO2@Carbon Composite Nanorods for High-Performance Lithium-Ion Batteries
    Pang, Haibo
    Zhang, Weicai
    Yu, Peifeng
    Pan, Ning
    Hu, Hang
    Zheng, Mingtao
    Xiao, Yong
    Liu, Yingliang
    Liang, Yeru
    NANOMATERIALS, 2020, 10 (03)
  • [24] Core-Shell Nanoparticles with a Redox Polymer Core and a Silica Porous Shell as High-Performance Cathode Material for Lithium-Ion Batteries
    Jia, He
    Friebe, Christian
    Schubert, Ulrich S.
    Zhang, Xiaozhe
    Quan, Ting
    Lu, Yan
    Gohy, Jean-Francois
    ENERGY TECHNOLOGY, 2020, 8 (03)
  • [25] Hierarchical void structured Si/PANi/C hybrid anode material for high-performance lithium-ion batteries
    Mu, Ge
    Ding, Zepeng
    Mu, Daobin
    Wu, Borong
    Bi, Jiaying
    Zhang, Ling
    Yang, Hao
    Wu, Hanfeng
    Wu, Feng
    ELECTROCHIMICA ACTA, 2019, 300 : 341 - 348
  • [26] A novel Co-Li2O@Si core-shell nanowire array composite as a high-performance lithium-ion battery anode material
    Zhao, Wenjia
    Du, Ning
    Zhang, Hui
    Yang, Deren
    NANOSCALE, 2016, 8 (08) : 4511 - 4519
  • [27] Hollow core-shell structured CNT/PAN@Co9S8@C coaxial nanocables as high-performance anode material for lithium ion batteries
    Gao, Junting
    Wang, Xingchao
    Huang, Yudai
    Meng, Zhaoting
    Sun, Ying
    Zhang, Yue
    Guo, Yong
    Tang, Xincun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 853
  • [28] Silver-nickel oxide core-shell nanoflower arrays as high-performance anode for lithium-ion batteries
    Zhao, Wenjia
    Du, Ning
    Zhang, Hui
    Yang, Deren
    JOURNAL OF POWER SOURCES, 2015, 285 : 131 - 136
  • [29] Synthesis of Si/TiO2 core-shell nanoparticles as anode material for high performance lithium ion batteries
    Li, Jun
    Wang, Yao
    Huang, Zongyu
    Huang, Kai
    Qi, Xiang
    Zhong, Jianxin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (12) : 12813 - 12819
  • [30] Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries
    Lv, Pengpeng
    Zhao, Hailei
    Gao, Chunhui
    Zhang, Tianhou
    Liu, Xin
    ELECTROCHIMICA ACTA, 2015, 152 : 345 - 351