Hollow core-shell structured Si@NiAl-LDH composite as high-performance anode material in lithium-ion batteries

被引:29
|
作者
Li, Qiongguang [1 ,2 ]
Wang, Yanhong [2 ,3 ]
Lu, Bin [1 ,2 ]
Yu, Jing [2 ]
Yuan, Menglei [1 ,2 ]
Tan, Qiangqiang [2 ,3 ]
Zhong, Ziyi [4 ,5 ]
Su, Fabing [2 ,3 ,6 ]
机构
[1] Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Inst Proc Engn, CAS Key Lab Green Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China
[3] Zhongke Langfang Inst Proc Engn, Langfang Econ & Tech Dev Zone, Fenghua Rd 1, Langfang 065001, Hebei, Peoples R China
[4] GTIIT, Coll Engn, 241 Daxue Rd, Jinping Dist 515063, Shantou, Peoples R China
[5] Technion Israel Inst Technol IIT, IL-32000 Haifa, Israel
[6] Shenyang Univ Chem Technol, Inst Ind Chem & Energy Technol, Shenyang 110142, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
hollow core-shell structure; Si@NiAl-LDH; Hybrid composites; Pseudocapacitance; Anode; Lithium-ion batteries; LAYERED DOUBLE HYDROXIDE; ELECTROCHEMICAL ENERGY-STORAGE; TIO2; ANATASE; CARBON; FABRICATION; NANOCOMPOSITE; INTERPHASE; CATALYST; SPHERES; DESIGN;
D O I
10.1016/j.electacta.2019.135331
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Vast volume expansion of Si-based materials severely deteriorates the electrochemical performance of lithium-ion batteries (LIBs). To overcome this problem, we designed and synthesized Si@NiAl-LDH (layered double hydroxide) hybrid composites with the unique hollow core-shell structure via a reprecipitation and in situ growth process. In principle, the core of Si nanoparticles (Si NPs) can contribute to a high Li-storage capacity, the void space between the shell of LDH and the Si-core can effectively tolerate the volume expansion of Si NPs, and the shell can maintain the structural integrity and contribute to the electrochemical performance as well. As demonstrated, when used as the anode materials of LIBs, Si@NiAl-LDH exhibited much enhanced electrochemical performance as compared with the LDHs. The Si@NiAl-LDH electrode had a reversible capacity of 534 mAhg(-1) after 60 cycles at 50 mAg(-1) while that of NiAl-LDH was 343 mAhg(-1) only. Regarding the rate performance, the Si@NiAl-LDH electrode could revert to 565 mAhg(-1) after a rate test, while that of NiAl-LDH electrode was 353 mAhg(-1) only. Obviously, the obtained clear structure-property relationship of the anode materials will be very conducive to the design and synthesis of the high-performance next-generation materials for energy storage and conversion. (c) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries
    Tao, Huachao
    Fan, Li-Zhen
    Song, Wei-Li
    Wu, Mao
    He, Xinbo
    Qu, Xuanhui
    NANOSCALE, 2014, 6 (06) : 3138 - 3142
  • [2] High-Performance Core-Shell Structured SiOx@Si-Silicide Nanocomposite Anode Material for Lithium-Ion Rechargeable Batteries
    Reddyprakash, Maddipatla
    Loka, Chadrasekhar
    Lee, Ryun Kyeong
    Lee, Kee-Sun
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (09)
  • [3] Facile synthesis of core-shell structured Si@graphene balls as a high-performance anode for lithium-ion batteries
    Jamaluddin, Anif
    Umesh, Bharath
    Chen, Fuming
    Chang, Jeng-Kuei
    Su, Ching-Yuan
    NANOSCALE, 2020, 12 (17) : 9616 - 9627
  • [4] Scalable synthesis of core-shell structured SiOx/nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries
    Shi, Lu
    Wang, Weikun
    Wang, Anbang
    Yuan, Keguo
    Jin, Zhaoqing
    Yang, Yusheng
    JOURNAL OF POWER SOURCES, 2016, 318 : 184 - 191
  • [5] Hollow core-shell ZnMn2O4 microspheres as a high-performance anode material for lithium-ion batteries
    Zhang, Li-Xin
    Wang, Ya-Lei
    Jiu, Hong-Fang
    Qiu, Hao-yang
    Wang, Hong-yu
    CERAMICS INTERNATIONAL, 2015, 41 (08) : 9655 - 9661
  • [6] Core-shell carbon composite material as anode materials for lithium-ion batteries
    Qu, Xiaoxiao
    Huang, Guangxu
    Xing, Baolin
    Si, Dongyong
    Xu, Bing
    Chen, Zehua
    Zhang, Chuanxiang
    Cao, Yijun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 772 : 814 - 822
  • [7] Si, Si/Cu core in carbon shell composite as anode material in lithium-ion batteries
    Wang, Ke
    He, Xiangming
    Wang, Li
    Ren, Jianguo
    Jiang, Changyin
    Wan, Chunrong
    SOLID STATE IONICS, 2007, 178 (1-2) : 115 - 118
  • [8] Hollow core-shell-structured Si-C composites as high-performance anodes for lithium-ion batteries
    Wang, Ting
    Wang, Fanghui
    Zhu, Hong
    MATERIALS LETTERS, 2015, 161 : 89 - 92
  • [9] A core-shell Si@Nb2O5 composite as an anode material for lithium-ion batteries
    Wang, Guanqin
    Wen, Zhongsheng
    Du, Lulu
    Li, Song
    Ji, Shijun
    Sun, Juncai
    RSC ADVANCES, 2016, 6 (46): : 39728 - 39733
  • [10] In situ synthesis of core-shell structured Ge@NC hybrids as high performance anode material for lithium-ion batteries
    Wang, Bangrun
    Jin, Jun
    Wen, Zhaoyin
    CHEMICAL ENGINEERING JOURNAL, 2019, 360 : 1301 - 1309