The quasi-geostrophic equation in the Triebel-Lizorkin spaces

被引:51
|
作者
Chae, D [1 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul 151742, South Korea
关键词
EULER EQUATIONS; FLOW; BEHAVIOR; BESOV;
D O I
10.1088/0951-7715/16/2/307
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the local-in-time well-posedness in the Triebel-Lizorkin spaces for the two-dimensional quasi-geostrophic equation. We also obtain a sharp finite time blow-up criterion of solutions both in the super-critical and the critical cases, which improve the previous one by Constantin et al (1994 Nonlinearrily 7 1495-533). In the proof of the results, we use Littlewood-Paley decomposition and the paradifferential calculus applied directly to the equation.
引用
收藏
页码:479 / 495
页数:17
相关论文
共 50 条
  • [41] On Fourier multipliers in weighted Triebel-Lizorkin spaces
    Edmunds, DE
    Kokilashvili, V
    Meskhi, A
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2002, 7 (04): : 555 - 591
  • [42] Traces of Besov and Triebel-Lizorkin spaces on domains
    Schneider, Cornelia
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) : 572 - 586
  • [43] Homogeneity Property of Besov and Triebel-Lizorkin Spaces
    Schneider, Cornelia
    Vybiral, Jan
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [44] Classifying Triebel-Lizorkin Capacities in Metric Spaces
    Lehrback, Juha
    Mohanta, Kaushik
    Vahakangas, Antti V.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2025, 31 (02)
  • [45] Decomposition of Besov and Triebel-Lizorkin spaces on the sphere
    Narcowich, F.
    Petrushev, P.
    Ward, J.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (02) : 530 - 564
  • [46] Boundedness of Marcinkiewicz integral on Triebel-Lizorkin spaces
    ZHANG Chun-jie 1 CHEN Jie-cheng 2 1 College of Science
    Applied Mathematics:A Journal of Chinese Universities, 2010, (01) : 48 - 54
  • [47] New bases for Triebel-Lizorkin and Besov spaces
    Kyriazis, G
    Petrushev, P
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (02) : 749 - 776
  • [48] Harmonic Besov and Triebel-Lizorkin Spaces on the Ball
    Ivanov, Kamen
    Petrushev, Pencho
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (05) : 1062 - 1096
  • [49] Boundedness of certain commutators on Triebel-Lizorkin spaces
    Jiang, Liya
    Zhang, Pu
    Jia, Houyu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (02) : 1264 - 1272
  • [50] Continuous wavelet transform on Triebel-Lizorkin spaces
    Baison-Olmo, Antonio Luis
    Cruz-Barriguete, Victor Alberto
    Navarro, Jaime
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (08) : 3159 - 3170