Understanding charge transport and recombination losses in high performance polymer solar cells with non-fullerene acceptors

被引:62
|
作者
Zhang, Xuning [1 ]
Zuo, Xiaobing [4 ]
Xie, Shenkun [1 ]
Yuan, Jianyu [3 ]
Zhou, Huiqiong [2 ]
Zhang, Yuan [1 ]
机构
[1] Beihang Univ, Sch Chem, HEEGER Beijing Res & Dev Ctr, Beijing 100191, Peoples R China
[2] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[3] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Jiangsu, Peoples R China
[4] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
基金
中国国家自然科学基金;
关键词
MOLECULAR DESIGN; HIGH-EFFICIENCY; CONJUGATED POLYMER; ELECTRON-ACCEPTORS; DEVICE PHYSICS; HIGH-MOBILITY; MORPHOLOGY; DYNAMICS; DISORDER; VOLTAGE;
D O I
10.1039/c7ta05865a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The photovoltaic performance of organic solar cells can be enhanced by achieving a fundamental understanding of the key processes that govern the device behaviour. In this work, we comprehensively investigate temperature (T)-dependent charge transport, non-geminate recombination losses and intermolecular stacking based on three representative organic bulk heterojunction (BHJ) solar cells comprising the polymeric donor of PBDB-T blended with non-fullerene small molecule ITIC and polymeric P(NDI2OD-T2) alongside PC71BM acceptors. Surprisingly, the champion solar cell based on PBDB-T: ITIC, even though exhibiting the most imbalanced transport, produces the highest PCE approaching 10%. We find that such an imbalance is in association with the decrease in the recombination reduction factor with respect to the Langevin rate constant. This beneficially leads to mitigated non-geminate recombination and gains in photoconductivity. In contrast, the all-polymer solar cell using the P(NDI2OD-T2) acceptor displays an excellent balance in mobility while suffering from a more substantial recombination, which causes severe carrier losses and reduced photocurrent. T-dependent mobility measurements indicate that the activation energy for the transport in these BHJ films is low (50-150 meV) which is rationalized by the preferential out-of-plane intermolecular pi-pi stacking mainly adopted by the donor molecules. The combined results point to an indication that the electron mobility in non-fullerene acceptors may not be a severe restraint while charge recombination losses play a critical role in ultimate photovoltaic characteristics based on these emerging materials.
引用
收藏
页码:17230 / 17239
页数:10
相关论文
共 50 条
  • [21] Comparing non-fullerene acceptors with fullerene in polymer solar cells: a case study with FTAZ and PyCNTAZ
    Bauer, Nicole
    Zhang, Qianqian
    Zhao, Jingbo
    Ye, Long
    Kim, Joo-Hyun
    Constantinou, Iordania
    Yan, Liang
    So, Franky
    Ade, Harald
    Yan, He
    You, Wei
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (10) : 4886 - 4893
  • [22] Aggregation of non-fullerene acceptors in organic solar cells
    Li, Donghui
    Zhang, Xue
    Liu, Dan
    Wang, Tao
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (31) : 15607 - 15619
  • [23] Organic solar cells based on non-fullerene acceptors
    Hou, Jianhui
    Inganas, Olle
    Friend, Richard H.
    Gao, Feng
    NATURE MATERIALS, 2018, 17 (02) : 119 - 128
  • [24] Efficient Organic Solar Cells with Non-Fullerene Acceptors
    Li, Shuixing
    Liu, Wenqing
    Li, Chang-Zhi
    Shi, Minmin
    Chen, Hongzheng
    SMALL, 2017, 13 (37)
  • [25] Organic solar cells based on non-fullerene acceptors
    Jianhui Hou
    Olle Inganäs
    Richard H. Friend
    Feng Gao
    Nature Materials, 2018, 17 (2) : 119 - 128
  • [26] Polymer Donors for High-Performance Non-Fullerene Organic Solar Cells
    Fu, Huiting
    Wang, Zhaohui
    Sun, Yanming
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (14) : 4442 - 4453
  • [27] Non-fullerene small molecule electron acceptors for high-performance organic solar cells
    Hao Lin
    Qiang Wang
    Journal of Energy Chemistry, 2018, (04) : 990 - 1016
  • [28] Non-fullerene small molecule electron acceptors for high-performance organic solar cells
    Lin, Hao
    Wang, Qiang
    JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (04) : 990 - 1016
  • [29] Non-fullerene small molecule electron acceptors for high-performance organic solar cells
    Hao Lin
    Qiang Wang
    Journal of Energy Chemistry, 2018, 27 (04) : 990 - 1016
  • [30] Non-fullerene polymer acceptors based on perylene diimides in all-polymer solar cells
    Liu, Zhitian
    Zeng, Di
    Gao, Xiang
    Li, Pengcheng
    Zhang, Qi
    Peng, Xiang
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 189 : 103 - 117