EPIMORPHISMS OF 3-MANIFOLD GROUPS

被引:0
|
作者
Boileau, Michel [1 ]
Friedl, Stefan [2 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, I2M, Marseille, France
[2] Univ Regensburg, Fak Math, Regensburg, Germany
来源
QUARTERLY JOURNAL OF MATHEMATICS | 2018年 / 69卷 / 03期
关键词
GRAPH MANIFOLDS; HEEGAARD-SPLITTINGS; HAKEN CONJECTURE; SURFACE BUNDLES; CYCLIC COVERS; RANK; RIGIDITY; GENUS;
D O I
10.1093/qmath/hay007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f: M -> N be a proper map between two aspherical compact orientable 3-manifolds with empty or toroidal boundary. We assume that N is not a closed graph manifold. Suppose that f induces an epimorphism on fundamental groups. We show that f is homotopic to a homeomorphism if one of the following holds: either for any finite-index subgroup Gamma of pi(1)(N) the ranks of Gamma and of f(*)(-1) (Gamma) agree, or for any finite cover (N) over tilde of N the Heegaard genus of (N) over tilde and the Heegaard genus of the pull-back cover (M) over tilde agree.
引用
收藏
页码:931 / 942
页数:12
相关论文
共 50 条
  • [21] FRATTINI SUBGROUPS OF 3-MANIFOLD GROUPS
    ALLENBY, RBJT
    BOLER, J
    EVANS, B
    MOSER, LE
    TANG, CY
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 247 (JAN) : 275 - 300
  • [22] SUBGROUP SEPARABILITY AND 3-MANIFOLD GROUPS
    LONG, DD
    NIBLO, GA
    MATHEMATISCHE ZEITSCHRIFT, 1991, 207 (02) : 209 - 215
  • [23] On representation varieties of 3-manifold groups
    Kapovich, Michael
    Millson, John J.
    GEOMETRY & TOPOLOGY, 2017, 21 (04) : 1931 - 1968
  • [24] SUBGROUP DISTORTION OF 3-MANIFOLD GROUPS
    Hoang Thanh Nguyen
    Sun, Hongbin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (09) : 6683 - 6711
  • [25] SUBNORMAL SUBGROUPS IN 3-MANIFOLD GROUPS
    ELKALLA, HS
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1984, 30 (OCT): : 342 - 360
  • [26] 3-manifold Groups and Nonpositive Curvature
    M. Kapovich
    B. Leeb
    Geometric & Functional Analysis GAFA, 1998, 8 : 841 - 852
  • [27] Free subgroups of 3-manifold groups
    Belolipetsky, Mikhail
    Doria, Cayo
    GROUPS GEOMETRY AND DYNAMICS, 2020, 14 (01) : 243 - 254
  • [28] A NOTE ON CENTRALITY IN 3-MANIFOLD GROUPS
    KROPHOLLER, PH
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1990, 107 : 261 - 266
  • [29] 3-MANIFOLD GROUPS, KAHLER GROUPS AND COMPLEX SURFACES
    Biswas, Indranil
    Mj, Mahan
    Seshadri, Harish
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2012, 14 (06)
  • [30] Virtually cyclic dimension for 3-manifold groups
    Joecken, Kyle
    Lafont, Jean-Francois
    Sanchez Saldana, Luis Jorge
    GROUPS GEOMETRY AND DYNAMICS, 2021, 15 (02) : 577 - 606