ON 2-ABSORBING PRIMARY SUBMODULES OF MODULES OVER COMMUTATIVE RINGS

被引:21
|
作者
Mostafanasab, Hojjat [1 ]
Yetkin, Ece [2 ]
Tekir, Unsal [2 ]
Darani, Ahmad Yousefian [1 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Math & Applicat, POB 179, Ardebil, Iran
[2] Marmara Univ, Dept Math, TR-34722 Istanbul, Turkey
关键词
Multiplication module; Primary submodule; Prime submodule; 2-absorbing submodule; n-absorbing submodule; IDEALS; RADICALS;
D O I
10.1515/auom-2016-0020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
All rings are commutative with 1 not equal 0, and all modules are unital. The purpose of this paper is to investigate the concept of 2 -absorbing primary submodules generalizing 2 -absorbing primary ideals of rings. Let M be an R -module. A proper submodule N of an R -module M is called a 2 -absorbing primary submodule of M if whenever a, b is an element of R and m is an element of M and abm is an element of N, then am is an element of M-rad(N) or bm is an element of M-rad(N) or ab is an element of (N :(R) M). It is shown that a proper submodule N of M is a 2 -absorbing primary submodule if and only if whenever I-1 I-2 K subset of N for some ideals I-1,I-2 of R and some submodule K of M, then I-1,I-2 subset of (N :(R) M) or I-1 K subset of M-rad(N) or I2K subset of M-rad(N). We prove that for a submodule N of an R -module M if M-rad(N) is a prime submodule of M, then N is a 2 -absorbing primary submodule of M. If N is a 2 -absorbing primary submodule of a finitely generated multiplication R -module M, then (N :(R) M) is a 2 -absorbing primary ideal of R and M-rad(N) is a 2 -absorbing submodule of M.
引用
收藏
页码:335 / 351
页数:17
相关论文
共 50 条
  • [31] ON 2-ABSORBING MULTIPLICATION MODULES OVER PULLBACK RINGS
    Farzalipour, Farkhondeh
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (04): : 1021 - 1038
  • [32] 2-ABSORBING delta -PRIMARY FUZZY IDEALS OF COMMUTATIVE RINGS
    Sonmez, Deniz
    Yesilot, Gursel
    Onar, Serkan
    Ersoy, Bayram Ali
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2018, 9 (01): : 23 - 29
  • [33] On 2-Absorbing Quasi Primary Submodules
    Koc, Suat
    Uregen, Rabia Nagehan
    Tekir, Unsal
    FILOMAT, 2017, 31 (10) : 2943 - 2950
  • [34] On the 2-Absorbing Ideals in Commutative Rings
    Payrovi, Sh.
    Babaei, S.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (04) : 895 - 900
  • [35] BAER SUBMODULES OF MODULES OVER COMMUTATIVE RINGS
    Anebri, Adam
    Kim, Hwankoo
    Mahdou, Najib
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2023, 34 : 31 - 47
  • [36] 2-Absorbing δ-Primary Intuitionistic Fuzzy Ideals of Commutative Rings
    Onar, Serkan
    Ozkan, Erdogan Mehmet
    Ersoy, Bayram Ali
    Hila, Kostaq
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2023, 19 (01) : 87 - 104
  • [37] On 2-Absorbing Quasi-Primary Ideals in Commutative Rings
    Tekir U.
    Koç S.
    Oral K.H.
    Shum K.P.
    Communications in Mathematics and Statistics, 2016, 4 (1) : 55 - 62
  • [38] 2-Nil submodules of modules over commutative rings
    Mahdou, Najib
    Moutui, Moutu Abdou Salam
    Celikel, Ece Yetkin
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (12)
  • [39] On 2-absorbing commutative semigroups and their applications to rings
    A. Yousefian Darani
    E. R. Puczyłowski
    Semigroup Forum, 2013, 86 : 83 - 91
  • [40] 2-absorbing δ-semiprimary Ideals of Commutative Rings
    Celikel, Ece Yetkin
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 711 - 725