ON 2-ABSORBING PRIMARY SUBMODULES OF MODULES OVER COMMUTATIVE RINGS

被引:21
|
作者
Mostafanasab, Hojjat [1 ]
Yetkin, Ece [2 ]
Tekir, Unsal [2 ]
Darani, Ahmad Yousefian [1 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Math & Applicat, POB 179, Ardebil, Iran
[2] Marmara Univ, Dept Math, TR-34722 Istanbul, Turkey
关键词
Multiplication module; Primary submodule; Prime submodule; 2-absorbing submodule; n-absorbing submodule; IDEALS; RADICALS;
D O I
10.1515/auom-2016-0020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
All rings are commutative with 1 not equal 0, and all modules are unital. The purpose of this paper is to investigate the concept of 2 -absorbing primary submodules generalizing 2 -absorbing primary ideals of rings. Let M be an R -module. A proper submodule N of an R -module M is called a 2 -absorbing primary submodule of M if whenever a, b is an element of R and m is an element of M and abm is an element of N, then am is an element of M-rad(N) or bm is an element of M-rad(N) or ab is an element of (N :(R) M). It is shown that a proper submodule N of M is a 2 -absorbing primary submodule if and only if whenever I-1 I-2 K subset of N for some ideals I-1,I-2 of R and some submodule K of M, then I-1,I-2 subset of (N :(R) M) or I-1 K subset of M-rad(N) or I2K subset of M-rad(N). We prove that for a submodule N of an R -module M if M-rad(N) is a prime submodule of M, then N is a 2 -absorbing primary submodule of M. If N is a 2 -absorbing primary submodule of a finitely generated multiplication R -module M, then (N :(R) M) is a 2 -absorbing primary ideal of R and M-rad(N) is a 2 -absorbing submodule of M.
引用
收藏
页码:335 / 351
页数:17
相关论文
共 50 条