共 34 条
- [31] An Exact l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_1$$\end{document} Penalty Approach for Interval-Valued Programming Problem [J]. Journal of the Operations Research Society of China, 2016, 4 (4) : 461 - 481
- [32] On the exact l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{1}$$\end{document} penalty function method for convex nonsmooth optimization problems with fuzzy objective function [J]. Soft Computing, 2022, 26 (21) : 11627 - 11643
- [33] On the exactness and the convergence of the l1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{1}$$\end{document} exact penalty E-function method for E-differentiable optimization problems [J]. OPSEARCH, 2023, 60 (3) : 1331 - 1359
- [34] Existence of solution for nonlinear elliptic inclusion problems with degenerate coercivity and L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document}-data [J]. Journal of Elliptic and Parabolic Equations, 2022, 8 (1) : 127 - 150