Molecular Pathophysiology of Gout

被引:220
|
作者
Desai, Jyaysi [1 ]
Steiger, Stefanie [1 ]
Anders, Hans-Joachim [1 ]
机构
[1] Klinikum Univ Munchen, Med Klin & Poliklin 4, Munich, Germany
关键词
INTERLEUKIN-1 RECEPTOR ANTAGONIST; NEUTROPHIL EXTRACELLULAR TRAPS; INDUCED ACUTE-INFLAMMATION; OF-RHEUMATOLOGY GUIDELINES; URIC-ACID CRYSTALS; TOLL-LIKE RECEPTOR; NF-KAPPA-B; CELL-DEATH; NEGATIVE REGULATION; NLRP3; INFLAMMASOME;
D O I
10.1016/j.molmed.2017.06.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Three contradictory clinical presentations of gout have puzzled clinicians and basic scientists for some time: first, the crescendo of sterile inflammation in acute gouty arthritis; second, its spontaneous resolution, despite monosodium urate (MSU) crystal persistence in the synovium; and third, immune anergy to MSU crystal masses observed in tophaceous or visceral gout. Here, we provide an update on the molecular pathophysiology of these gout manifestations, namely, how MSU crystals can trigger the auto-amplification loop of necroinflammation underlying the crescendo of acute gouty arthritis. We also discuss new findings, such as how aggregating neutrophil extracellular traps (NETs) might drive the resolution of arthritis and how these structures, together with granuloma formation, might support immune anergy, but yet promote tissue damage and remodeling during tophaceous gout.
引用
收藏
页码:756 / 768
页数:13
相关论文
共 50 条
  • [31] Adenosine - from molecular mechanisms to pathophysiology
    Sobrevia, Luis
    Fredholm, Bertil B.
    MOLECULAR ASPECTS OF MEDICINE, 2017, 55 : 1 - 3
  • [32] Molecular and cellular pathophysiology of obstructive nephropathy
    Robert L. Chevalier
    Pediatric Nephrology, 1999, 13 : 612 - 619
  • [33] Angiogenesis in gliomas: Biology and molecular pathophysiology
    Fischer, I
    Gagner, JP
    Law, M
    Newcomb, EW
    Zagzag, D
    BRAIN PATHOLOGY, 2005, 15 (04) : 297 - 310
  • [34] Molecular Pathophysiology of Myeloma and Clinical Applications
    Anderson, Kenneth
    CLINICAL LYMPHOMA MYELOMA & LEUKEMIA, 2017, 17 (10): : S19 - S19
  • [35] Molecular Pathophysiology of Renal Tubular Acidosis
    Pereira, P. C. B.
    Miranda, D. M.
    Oliveira, E. A.
    Simoes e Silva, A. C.
    CURRENT GENOMICS, 2009, 10 (01) : 51 - 59
  • [36] Chordoma: an update on the pathophysiology and molecular mechanisms
    Sun X.
    Hornicek F.
    Schwab J.H.
    Current Reviews in Musculoskeletal Medicine, 2015, 8 (4) : 344 - 352
  • [37] A molecular pharmacological approach to the pathophysiology of schizophrenia
    Nishikawa, T
    BIOLOGICAL PSYCHIATRY, 2000, 47 (08) : 116S - 117S
  • [38] Molecular pathophysiology of Parkinson's disease
    Moore, DJ
    West, AB
    Dawson, VL
    Dawson, TM
    ANNUAL REVIEW OF NEUROSCIENCE, 2005, 28 : 57 - 87
  • [39] Molecular pathophysiology of chronic pancreatitis—an update
    Helmut Friess
    Jörg Kleeff
    Markus W. Büchler
    Journal of Gastrointestinal Surgery, 2003, 7 : 943 - 945
  • [40] Molecular Pathophysiology of Uric Acid Homeostasis
    Estiverne, Christopher
    Mandal, Asim K.
    Mount, David B.
    SEMINARS IN NEPHROLOGY, 2020, 40 (06) : 535 - 549