ON INCOMPRESSIBLE LIMITS FOR THE NAVIER-STOKES SYSTEM ON UNBOUNDED DOMAINS UNDER SLIP BOUNDARY CONDITIONS

被引:17
|
作者
Donatelli, Donatella [1 ]
Feireisl, Eduard [2 ]
Novotny, Antonin [3 ]
机构
[1] Univ Aquila, Dept Matemat Pura & Applicata, I-67100 Laquila, Italy
[2] Acad Sci Czech Republic, Inst Math, CR-11567 Prague 1, Czech Republic
[3] Univ Sud Toulon Var, IMATH, F-83957 La Garde, France
来源
关键词
Navier-Stokes equations; singular limits; low Mach number; compressible fluids; unbounded domains; COMPRESSIBLE EULER EQUATION; MACH NUMBER LIMIT; FLOWS; EXTERIOR; WAVE;
D O I
10.3934/dcdsb.2010.13.783
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the low Mach number limit for the compressible Navier-Stokes system supplemented with Navier's boundary condition on an unbounded domain with compact boundary. Our main result asserts that the velocities converge pointwise to a solenoidal vector field - a weak solution of the incompressible Navier-Stokes system - while the fluid density becomes constant. The proof is based on a variant of local energy decay property for the underlying acoustic equation established by Kato.
引用
收藏
页码:783 / 798
页数:16
相关论文
共 50 条