Fully Transparent and Sensitivity-Programmable Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistor-Based Biosensor Platforms with Resistive Switching Memories

被引:2
|
作者
Jeon, Hyeong-Un [1 ]
Cho, Won-Ju [1 ]
机构
[1] Kwangwoon Univ, Dept Elect Mat Engn, 20 Gwangun Ro, Seoul 01897, South Korea
基金
新加坡国家研究基金会;
关键词
amorphous oxide semiconductor; ion-sensitive field-effect transistor; resistive coupling effect; embedded resistive switching memories; multi-level state; FIELD-EFFECT TRANSISTORS; PH SENSOR; GATE; DRIFT; HYSTERESIS; ISFETS; MODEL;
D O I
10.3390/s21134435
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper presents a fully transparent and sensitivity-programmable biosensor based on an amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) with embedded resistive switching memories (ReRAMs). The sensor comprises a control gate (CG) and a sensing gate (SG), each with a resistive switching (RS) memory connected, and a floating gate (FG) that modulates the channel conductance of the a-IGZO TFT. The resistive coupling between the RS memories connected to the CG and SG produces sensitivity properties that considerably exceed the limit of conventional ion-sensitive field-effect transistor (ISFET)-based sensors. The resistances of the embedded RS memories were determined by applying a voltage to the CG-FG and SG-FG structures independently and adjusting the compliance current. Sensors constructed using RS memories with different resistance ratios yielded a pH sensitivity of 50.5 mV/pH (R-CG:R-SG = 1:1), 105.2 mV/pH (R-CG:R-SG = 2:1), and 161.9 mV/pH (R-CG:R-SG = 3:1). Moreover, when the R-CG:R-SG = 3:1, the hysteresis voltage width (V-H) and drift rate were 54.4 mV and 32.9 mV/h, respectively. As the increases in V-H and drift rate are lower than the amplified sensitivity, the sensor performs capably. The proposed device is viable as a versatile sensing device capable of detecting various substances, such as cells, antigens, DNA, and gases.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Inert Gas Annealing Effect in Solution-Processed Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors
    Lee, Seungwoon
    Jeong, Jaewook
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2017, 71 (04) : 209 - 214
  • [42] High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100°C
    Kim, Won-Gi
    Tak, Young Jun
    Ahn, Byung Du
    Jung, Tae Soo
    Chung, Kwun-Bum
    Kim, Hyun Jae
    SCIENTIFIC REPORTS, 2016, 6
  • [43] High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C
    Won-Gi Kim
    Young Jun Tak
    Byung Du Ahn
    Tae Soo Jung
    Kwun-Bum Chung
    Hyun Jae Kim
    Scientific Reports, 6
  • [44] Study of the Correlation between the Amorphous Indium-Gallium-Zinc Oxide Film Quality and the Thin-Film Transistor Performance
    Hu, Shiben
    Lu, Kuankuan
    Ning, Honglong
    Yao, Rihui
    Gong, Yanfen
    Pan, Zhangxu
    Guo, Chan
    Wang, Jiantai
    Pang, Chao
    Gong, Zheng
    Peng, Junbiao
    NANOMATERIALS, 2021, 11 (02) : 1 - 8
  • [45] Short time helium annealing for solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors
    Lee, Seung-Un
    Jeong, Jaewook
    AIP ADVANCES, 2018, 8 (08):
  • [46] Contact resistance asymmetry of amorphous indium-gallium-zinc-oxide thin-film transistors by scanning Kelvin probe microscopy
    Wu, Chen-Fei
    Chen, Yun-Feng
    Lu, Hai
    Huang, Xiao-Ming
    Ren, Fang-Fang
    Chen, Dun-Jun
    Zhang, Rong
    Zheng, You-Dou
    CHINESE PHYSICS B, 2016, 25 (05)
  • [47] Thermal Characteristics of Amorphous Indium-Gallium-Zinc-Oxide and Graphite in Display Panel Based Thin Film Transistors
    Kim, Hak-Jun
    Kim, Youn-Jea
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (11) : 8971 - 8976
  • [48] Meyer-Neldel Rule and Extraction of Density of States in Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistor by Considering Surface Band Bending
    Jeong, Jaewook
    Jeong, Jae Kyeong
    Park, Jin-Seong
    Mo, Yeon-Gon
    Hong, Yongtaek
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (03)
  • [49] Hydrogen incorporation into amorphous indium gallium zinc oxide thin-film transistors
    Mattson, George W.
    Vogt, Kyle T.
    Wager, John F.
    Graham, Matt W.
    JOURNAL OF APPLIED PHYSICS, 2022, 131 (10)
  • [50] Simulation of the influence of the gate dielectric on amorphous indium-gallium-zinc oxide thin-film transistor reliability
    Mohamed Labed
    Nouredine Sengouga
    Journal of Computational Electronics, 2019, 18 : 509 - 518