Geometrical on-the-fly shock detection in smoothed particle hydrodynamics

被引:15
|
作者
Beck, A. M. [1 ]
Dolag, K. [1 ,2 ]
Donnert, J. M. F. [3 ]
机构
[1] Univ Observ Munich, Scheinerstr 1, D-81679 Munich, Germany
[2] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany
[3] INAF, Inst Radioastron, Via P Gobetti 101, I-40129 Bologna, Italy
关键词
hydrodynamics; shock waves; methods: numerical; LARGE-SCALE STRUCTURE; DIFFUSE RADIO-EMISSION; COSMIC-RAYS; COSMOLOGICAL SIMULATIONS; GALAXY CLUSTERS; ACCELERATION; WAVES; EVOLUTION; RELICS; EFFICIENCY;
D O I
10.1093/mnras/stw487
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present an on-the-fly geometrical approach for shock detection and Mach number calculation in simulations employing smoothed particle hydrodynamics (SPH). We utilize pressure gradients to select shock candidates and define up- and downstream positions. We obtain hydrodynamical states in the up- and downstream regimes with a series of normal and inverted kernel weightings parallel and perpendicular to the shock normals. Our on-the-fly geometrical Mach detector incorporates well within the SPH formalism and has low computational cost. We implement our Mach detector into the simulation code gadget and alongside many SPH improvements. We test our shock finder in a sequence of shock tube tests with successively increasing Mach numbers exceeding by far the typical values inside galaxy clusters. For all shocks, we resolve the shocks well and the correct Mach numbers are assigned. An application to a strong magnetized shock tube gives stable results in full magnetohydrodynamic setups. We simulate a merger of two idealized galaxy clusters and study the shock front. Shock structures within the merging clusters as well as the cluster shock are well captured by our algorithm and assigned correct Mach numbers.
引用
收藏
页码:2080 / 2087
页数:8
相关论文
共 50 条
  • [21] Curvilinear smoothed particle hydrodynamics
    Tavakkol, Sasan
    Zarrati, Amir Reza
    Khanpour, Mahdiyar
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2017, 83 (02) : 115 - 131
  • [22] Smoothed Particle Hydrodynamics in Astrophysics
    Springel, Volker
    ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 48, 2010, 48 : 391 - 430
  • [23] Smoothed particle hydrodynamics and magnetohydrodynamics
    Price, Daniel J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (03) : 759 - 794
  • [24] Detection of Silent Data Corruptions in Smoothed Particle Hydrodynamics Simulations
    Cavelan, Aurelien
    Cabezon, Ruben M.
    Ciorba, Florina M.
    2019 19TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2019, : 31 - 40
  • [25] Adaptive particle distribution for smoothed particle hydrodynamics
    Lastiwka, M
    Quinlan, N
    Basa, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2005, 47 (10-11) : 1403 - 1409
  • [26] On the kernel and particle consistency in smoothed particle hydrodynamics
    Sigalotti, Leonardo Di G.
    Klapp, Jaime
    Rendon, Otto
    Vargas, Carlos A.
    Pena-Polo, Franklin
    APPLIED NUMERICAL MATHEMATICS, 2016, 108 : 242 - 255
  • [27] Computational Simulation of Underwater Shock Wave Propagation using Smoothed Particle Hydrodynamics
    Shinzato, Shuhei
    Higa, Yoshikazu
    Tamaki, Tatsuhiro
    Iyama, Hirofumi
    Itoh, Shigeru
    EXPLOSION, SHOCK WAVE AND HIGH-ENERGY REACTION PHENOMENA II, 2014, 767 : 86 - +
  • [28] Smoothed particle hydrodynamics with smoothed pseudo-density
    Yamamoto, Satoko
    Saitoh, Takayuki R.
    Makino, Junichiro
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2015, 67 (03)
  • [29] Survey on Smoothed Particle Hydrodynamics and the Particle Systems
    Xi, Runping
    Luo, Zhangcai
    Feng, David Dagan
    Zhang, Yanning
    Zhang, Xiaopeng
    Han, Tianyi
    IEEE ACCESS, 2020, 8 : 3087 - 3105
  • [30] Interaction of Shock Waves with Discrete Gas Inhomogeneities: A Smoothed Particle Hydrodynamics Approach
    Albano, Andrea
    Alexiadis, Alessio
    APPLIED SCIENCES-BASEL, 2019, 9 (24):