Centers and characters of Jacobi group-invariant differential operator algebras

被引:0
|
作者
Conley, Charles H. [1 ]
Dahal, Rabin [2 ]
机构
[1] Univ N Texas, Dept Math, Denton, TX 76203 USA
[2] Texas Coll, Dept Math, Tyler, TX 75702 USA
关键词
Jacobi group; Invariant differential operators; FORMS;
D O I
10.1016/j.jnt.2014.09.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the algebras of differential operators invariant with respect to the scalar slash actions of real Jacobi groups of arbitrary rank. We consider only slash actions with invertible indices. The corresponding algebras are non-commutative and are generated by their elements of orders 2 and 3. We prove that their centers are polynomial in one variable and are generated by the Casimir operator. We also compute their characters: in rank exceeding 1 there are two, and in rank 1 there are in general five. In rank 1 we compute in addition all of their irreducible admissible representations. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:40 / 61
页数:22
相关论文
共 50 条
  • [11] Group-invariant Subspace Clustering
    Aeron, Shuchin
    Kernfeld, Eric
    2015 53RD ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2015, : 666 - 671
  • [12] Group-invariant percolation on graphs
    Benjamini, I
    Lyons, R
    Peres, Y
    Schramm, O
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (01) : 29 - 66
  • [13] Schur multipliers of C*-algebras, group-invariant compactification and applications to amenability and percolation
    Mukherjee, Chiranjib
    Recke, Konstantin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (02)
  • [14] Group-invariant Percolation on Graphs
    I. Benjamini
    R. Lyons
    Y. Peres
    O. Schramm
    Geometric & Functional Analysis GAFA, 1999, 9 : 29 - 66
  • [15] Group-Invariant Max Filtering
    Cahill, Jameson
    Iverson, Joseph W.
    Mixon, Dustin G.
    Packer, Daniel
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024,
  • [16] A THEOREM ON THE MEASURABILITY OF GROUP-INVARIANT OPERATORS
    SEGAL, IE
    DUKE MATHEMATICAL JOURNAL, 1959, 26 (04) : 549 - 552
  • [17] The combinatorics of certain group-invariant mappings
    D'Angelo, John P.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (05) : 621 - 634
  • [18] Group-Invariant Quantum Machine Learning
    Larocca, Martin
    Sauvage, Frederic
    Sbahi, Faris M.
    Verdon, Guillaume
    Coles, Patrick J.
    Cerezo, M.
    PRX QUANTUM, 2022, 3 (03):
  • [19] GROUP-INVARIANT ANALOGS OF HADAMARDS INEQUALITY
    ANDERSSON, SA
    PERLMAN, MD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 110 : 91 - 116
  • [20] Constructing group-invariant CR mappings
    Brooks J.
    Curry S.
    Grundmeier D.
    Gupta P.
    Kunz V.
    Malcom A.
    Palencia K.
    Complex Analysis and its Synergies, 2022, 8 (4)