A posteriori and a priori error analysis or finite element approximations of self-adjoint elliptic eigenvalue problems

被引:95
|
作者
Larson, MG [1 ]
机构
[1] Chalmers Univ Technol, Dept Math, S-41296 Gothenburg, Sweden
关键词
eigenvalue problem; finite element method; a priori and a posteriori error estimates; stability analysis;
D O I
10.1137/S0036142997320164
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. The analysis consists of three steps. First we prove a posteriori estimates for the error in the approximate eigenvectors and eigenvalues. The error in the eigenvectors is measured both in the L-2 and energy norms. In these estimates the error is bounded in terms of the mesh size, a stability factor, and the residual, obtained by inserting the approximate eigenpair into the differential equation. The stability factor describes relevant stability properties of the continuous problem and we give a precise estimate of its size in terms of the spectrum of the continuous problem, the mesh size, and the choice of norm. Next we prove an a priori estimate of the residual in terms of derivatives of the exact eigenvectors and the mesh size. Finally we obtain precise a priori error estimates by combination of the a posteriori error estimates with the a priori residual estimate. The analysis shows that the a posteriori estimates are optimal and may be used for quantitative error estimation and design of adaptive algorithms.
引用
收藏
页码:608 / 625
页数:18
相关论文
共 50 条
  • [31] A posteriori error estimates for mixed finite element approximations of parabolic problems
    Mats G. Larson
    Axel Målqvist
    Numerische Mathematik, 2011, 118 : 33 - 48
  • [32] A posteriori error estimators for mixed approximations of eigenvalue problems
    Durán, RG
    Gastaldi, L
    Padra, C
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (08): : 1165 - 1178
  • [33] On the L2 a Priori Error Estimates to the Finite Element Solution of Elliptic Problems with Singular Adjoint Operator
    Kinoshita, T.
    Hashimoto, K.
    Nakao, M. T.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2009, 30 (3-4) : 289 - 305
  • [34] A Class of Spectral Element Methods and Its A Priori/A Posteriori Error Estimates for 2nd-Order Elliptic Eigenvalue Problems
    Han, Jiayu
    Yang, Yidu
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [35] A priori and a posteriori error analysis of hp spectral element discretization for optimal control problems with elliptic equations
    Lin, Xiuxiu
    Chen, Yanping
    Huang, Yunqing
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 423
  • [36] Robust error estimates for approximations of non-self-adjoint eigenvalue problems
    Stefano Giani
    Luka Grubišić
    Agnieszka Międlar
    Jeffrey S. Ovall
    Numerische Mathematik, 2016, 133 : 471 - 495
  • [37] Robust error estimates for approximations of non-self-adjoint eigenvalue problems
    Giani, Stefano
    Grubisic, Luka
    Miedlar, Agnieszka
    Ovall, Jeffrey S.
    NUMERISCHE MATHEMATIK, 2016, 133 (03) : 471 - 495
  • [38] A Priori Error Analysis for the Finite Element Approximation of Elliptic Dirichlet Boundary Control Problems
    May, S.
    Rannacher, R.
    Vexler, B.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 637 - +
  • [39] Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis
    Bartels, S
    Carstensen, C
    Dolzmann, G
    NUMERISCHE MATHEMATIK, 2004, 99 (01) : 1 - 24
  • [40] Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis
    S. Bartels
    C. Carstensen
    G. Dolzmann
    Numerische Mathematik, 2004, 99 : 1 - 24