On crossing-families in planar point sets

被引:2
|
作者
Aichholzer, Oswin [1 ]
Kyncl, Jan [2 ]
Scheucher, Manfred [3 ]
Vogtenhuber, Birgit [1 ]
Valtr, Pavel [2 ]
机构
[1] Graz Univ Technol, Inst Software Technol, Graz, Austria
[2] Charles Univ Prague, Fac Math & Phys, Dept Appl Math, Prague, Czech Republic
[3] Tech Univ Berlin, Inst Math, Berlin, Germany
基金
奥地利科学基金会;
关键词
Crossing family; Point set; Order type; Geometric thrackle;
D O I
10.1016/j.comgeo.2022.101899
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A k-crossing family in a point set S in general position is a set of k segments spanned by points of S such that all k segments mutually cross. In this short note we present two statements on crossing families which are based on sets of small cardinality: (1) Any set of at least 15 points contains a crossing family of size 4. (2) There are sets of n points which do not contain a crossing family of size larger than 8 inverted right perpendicular pi/4inverted left perpendicular. Both results improve the previously best known bounds. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Planar Point Sets With Large Minimum Convex Decompositions
    Jesús García-López
    Carlos M. Nicolás
    Graphs and Combinatorics, 2013, 29 : 1347 - 1353
  • [42] Almost Empty Monochromatic Quadrilaterals in Planar Point Sets
    Liu, L.
    Zhang, Y.
    MATHEMATICAL NOTES, 2018, 103 (3-4) : 415 - 429
  • [43] Radial spacing distributions from planar point sets
    Baake, M.
    Goetze, F.
    Huck, C.
    Jakobi, T.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2014, 70 : 472 - 482
  • [44] Vietoris-Rips Complexes of Planar Point Sets
    Chambers, Erin W.
    de Silva, Vin
    Erickson, Jeff
    Ghrist, Robert
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (01) : 75 - 90
  • [45] A lower bound on the number of triangulations of planar point sets
    Aichholzer, O
    Hurtado, F
    Noy, M
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2004, 29 (02): : 135 - 145
  • [46] Disjoint empty convex pentagons in planar point sets
    Bhattacharya, Bhaswar B.
    Das, Sandip
    PERIODICA MATHEMATICA HUNGARICA, 2013, 66 (01) : 73 - 86
  • [47] Disjoint empty convex pentagons in planar point sets
    Bhaswar B. Bhattacharya
    Sandip Das
    Periodica Mathematica Hungarica, 2013, 66 : 73 - 86
  • [48] Universal point sets for planar three-trees
    Fulek, Radoslav
    Toth, Csaba D.
    JOURNAL OF DISCRETE ALGORITHMS, 2015, 30 (101-112) : 101 - 112
  • [49] Triangulating input-constrained planar point sets
    Held, Martin
    Mitchell, Joseph S. B.
    INFORMATION PROCESSING LETTERS, 2008, 109 (01) : 54 - 56
  • [50] Four-Connected Triangulations of Planar Point Sets
    Diwan, Ajit Arvind
    Ghosh, Subir Kumar
    Roy, Bodhayan
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (04) : 713 - 746