Chebyshev type inequalities via generalized fractional conformable integrals

被引:35
|
作者
Nisar, Kottakkaran Sooppy [1 ]
Rahman, Gauhar [2 ]
Mehrez, Khaled [3 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawasir, Saudi Arabia
[2] Shaheed Benazir Bhutto Univ, Dept Math, Sheringal, Pakistan
[3] Univ Kairouan, Dept Math, Issat Kasserine, Kairouan, Tunisia
关键词
Fractional integral; Generalized fractional conformable integral; Inequalities; HADAMARD TYPE INEQUALITIES; GRUSS TYPE;
D O I
10.1186/s13660-019-2197-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim in this present paper is to establish several Chebyshev type inequalities involving generalized fractional conformable integral operator recently introduced by T.U. Khan and M.A. Khan (J. Comput. Appl. Math. 346:378-389, 2019). Also, we present Chebyshev type inequalities involving Riemann-Liouville type fractional conformable integral operators as a particular result of our main result.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Some new inequalities of the Gruss type for conformable fractional integrals
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Qi, Feng
    AIMS MATHEMATICS, 2018, 3 (04): : 575 - 583
  • [32] Hermite-Hadamard type inequalities for conformable fractional integrals
    Khan, M. Adil
    Ali, T.
    Dragomir, S. S.
    Sarikaya, M. Z.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1033 - 1048
  • [33] On weighted Iyengar-type inequalities for conformable fractional integrals
    Sarikaya, Mehmet Zeki
    Yaldiz, Hatice
    Budak, Huseyin
    MATHEMATICAL SCIENCES, 2017, 11 (04) : 327 - 331
  • [34] On Hermite-Hadamard type inequalities via generalized fractional integrals
    Jleli, Mohamed
    O'Regan, Donal
    Samet, Bessem
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (06) : 1221 - 1230
  • [35] ON THE BULLEN-TYPE INEQUALITIES VIA GENERALIZED FRACTIONAL INTEGRALS AND THEIR APPLICATIONS
    Du, Tingsong
    Luo, Chunyan
    Cao, Zhijie
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (07)
  • [36] Some Generalized Hadamard-Type Inequalities via Fractional Integrals
    Bayraktar, B.
    Attaev, A. Kh
    Kudaev, V. Ch
    RUSSIAN MATHEMATICS, 2021, 65 (02) : 1 - 14
  • [37] Gruss type inequalities for generalized fractional integrals
    Erden, Samet
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [38] Generalized fractional inequalities of the Hermite-Hadamard type via new Katugampola generalized fractional integrals
    Omaba, M. E.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2022, 14 (02) : 475 - 484
  • [39] Hermite-Hadamard-Fejer Type Inequalities with Generalized K-Fractional Conformable Integrals and Their Applications
    Kalsoom, Humaira
    Khan, Zareen A.
    MATHEMATICS, 2022, 10 (03)
  • [40] Novel results on trapezoid-type inequalities for conformable fractional integrals
    Hezenci, Fatih
    Budak, Huseyin
    TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (02) : 425 - 438