Automated Discovery of Novel Drug Formulations Using Predictive Iterated High Throughput Experimentation

被引:21
|
作者
Caschera, Filippo [1 ,2 ]
Gazzola, Gianluca [1 ]
Bedau, Mark A. [1 ,4 ,5 ,6 ]
Moreno, Carolina Bosch [1 ]
Buchanan, Andrew [1 ]
Cawse, James [1 ,7 ]
Packard, Norman [1 ,3 ,4 ]
Hanczyc, Martin M. [1 ,2 ]
机构
[1] ProtoLife Inc, San Francisco, CA USA
[2] Univ So Denmark, Inst Chem & Phys, Odense, Denmark
[3] Santa Fe Inst, Santa Fe, NM 87501 USA
[4] European Ctr Living Technol, Venice, Italy
[5] Reed Coll, Portland, OR 97202 USA
[6] Univ So Denmark, Initiat Sci Soc & Policy, Odense, Denmark
[7] Cawse & Effect, Pittsfield, MA USA
来源
PLOS ONE | 2010年 / 5卷 / 01期
关键词
AMPHOTERICIN-B; PROTEIN CRYSTALLIZATION; OPTIMIZATION; GLUCOSIDE; AMBISOME; BILAYERS;
D O I
10.1371/journal.pone.0008546
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: We consider the problem of optimizing a liposomal drug formulation: a complex chemical system with many components (e. g., elements of a lipid library) that interact nonlinearly and synergistically in ways that cannot be predicted from first principles. Methodology/Principal Findings: The optimization criterion in our experiments was the percent encapsulation of a target drug, Amphotericin B, detected experimentally via spectrophotometric assay. Optimization of such a complex system requires strategies that efficiently discover solutions in extremely large volumes of potential experimental space. We have designed and implemented a new strategy of evolutionary design of experiments (Evo-DoE), that efficiently explores high-dimensional spaces by coupling the power of computer and statistical modeling with experimentally measured responses in an iterative loop. Conclusions: We demonstrate how iterative looping of modeling and experimentation can quickly produce new discoveries with significantly better experimental response, and how such looping can discover the chemical landscape underlying complex chemical systems.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Novel colloidal materials for high-throughput screening applications in drug discovery and genomics
    Trau, M
    Battersby, BJ
    ADVANCED MATERIALS, 2001, 13 (12-13) : 975 - +
  • [32] Dielectrophoresis for drug discovery and cell analysis: novel electrodes for high-throughput screening
    Hughes, MP
    Hoettges, KF
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 172A - 172A
  • [33] High-throughput virtual laboratory for drug discovery using massive datasets
    Glaser, Jens
    Vermaas, Josh V.
    Rogers, David M.
    Larkin, Jeff
    LeGrand, Scott
    Boehm, Swen
    Baker, Matthew B.
    Scheinberg, Aaron
    Tillack, Andreas F.
    Thavappiragasam, Mathialakan
    Sedova, Ada
    Hernandez, Oscar
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2021, 35 (05): : 452 - 468
  • [34] A high-throughput experimentation platform for data-driven discovery in electrochemistry
    Lin, Dian-Zhao
    Pan, Kai-Jui
    Li, Yuyin
    Zhang, Lingyu
    Jayarapu, Krish N.
    Li, Tianchen
    Tran, Jasmine Vy
    Goddard, William A.
    Luo, Zhengtang
    Liu, Yayuan
    SCIENCE ADVANCES, 2025, 11 (14):
  • [35] Enabling Catalyst Discovery through Machine Learning and High-Throughput Experimentation
    Williams, Travis
    McCullough, Katherine
    Lauterbach, Jochen A.
    CHEMISTRY OF MATERIALS, 2020, 32 (01) : 157 - 165
  • [36] A Fully Automated High-Throughput Flow Cytometry Screening System Enabling Phenotypic Drug Discovery
    Joslin, John
    Gilligan, James
    Anderson, Paul
    Garcia, Catherine
    Sharif, Orzala
    Hampton, Janice
    Cohen, Steven
    King, Miranda
    Zhou, Bin
    Jiang, Shumei
    Trussell, Christopher
    Dunn, Robert
    Fathman, John W.
    Snead, Jennifer L.
    Boitano, Anthony E.
    Nguyen, Tommy
    Conner, Michael
    Cooke, Mike
    Harris, Jennifer
    Ainscow, Ed
    Zhou, Yingyao
    Shaw, Chris
    Sipes, Dan
    Mainquist, James
    Lesley, Scott
    SLAS DISCOVERY, 2018, 23 (07) : 697 - 707
  • [37] Petri Net Modeling and Automated System Control of Protein Crystallization Experimentation in Drug Discovery
    Russo, Mark F.
    Michalczyk, Stephen
    Cahn, Matthew H.
    Klei, Herbert
    2008 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING, VOLS 1 AND 2, 2008, : 906 - 911
  • [38] High-throughput crystallography to enhance drug discovery
    Sharff, A
    Jhoti, H
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2003, 7 (03) : 340 - 345
  • [39] A High-Throughput Screen for Antibiotic Drug Discovery
    Scanlon, Thomas C.
    Dostal, Sarah M.
    Griswold, Karl E.
    BIOTECHNOLOGY AND BIOENGINEERING, 2014, 111 (02) : 232 - 243
  • [40] High Throughput Screening for Drug Discovery and Virus Detection
    Oke, Adetola
    Sahin, Deniz
    Chen, Xin
    Shang, Ying
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2022, 25 (09) : 1518 - 1533