The effect of water on colloidal quantum dot solar cells

被引:55
|
作者
Shi, Guozheng [1 ]
Wang, Haibin [2 ]
Zhang, Yaohong [3 ]
Cheng, Chen [1 ]
Zhai, Tianshu [1 ]
Chen, Botong [1 ]
Liu, Xinyi [4 ]
Jono, Ryota [2 ]
Mao, Xinnan [1 ]
Liu, Yang [1 ]
Zhang, Xuliang [1 ]
Ling, Xufeng [1 ]
Zhang, Yannan [1 ]
Meng, Xing [1 ]
Chen, Yifan [1 ]
Duhm, Steffen [1 ]
Zhang, Liang [1 ]
Li, Tao [4 ,5 ]
Wang, Lu [1 ]
Xiong, Shiyun [1 ]
Sagawa, Takashi [6 ]
Kubo, Takaya [2 ]
Segawa, Hiroshi [2 ]
Shen, Qing [3 ]
Liu, Zeke [1 ]
Ma, Wanli [1 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Joint Int Res Lab Carbon Based Funct Mat & Device, Suzhou, Jiangsu, Peoples R China
[2] Univ Tokyo, Res Ctr Adv Sci & Technol, Meguro Ku, Tokyo, Japan
[3] Univ Electrocommun, Fac Informat & Engn, Tokyo, Japan
[4] Northern Illinois Univ, Dept Chem & Biochem, De Kalb, IL USA
[5] Argonne Natl Lab, Xray Sci Div, Lemont, IL USA
[6] Kyoto Univ, Grad Sch Energy Sci, Kyoto, Japan
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
SUB-BANDGAP STATES; THIN-FILMS; EFFICIENCY; PEROVSKITE; PHASE; ELECTRON; SURFACE; EVOLUTION; STRATEGY; DYNAMICS;
D O I
10.1038/s41467-021-24614-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Almost all surfaces sensitive to the ambient environment are covered by water, whereas the impacts of water on surface-dominated colloidal quantum dot (CQD) semiconductor electronics have rarely been explored. Here, strongly hydrogen-bonded water on hydroxylated lead sulfide (PbS) CQD is identified. The water could pilot the thermally induced evolution of surface chemical environment, which significantly influences the nanostructures, carrier dynamics, and trap behaviors in CQD solar cells. The aggravation of surface hydroxylation and water adsorption triggers epitaxial CQD fusion during device fabrication under humid ambient, giving rise to the inter-band traps and deficiency in solar cells. To address this problem, meniscus-guided-coating technique is introduced to achieve dense-packed CQD solids and extrude ambient water, improving device performance and thermal stability. Our works not only elucidate the water involved PbS CQD surface chemistry, but may also achieve a comprehensive understanding of the impact of ambient water on CQD based electronics. Surface of colloidal quantum dot is sensitive to water, and the interaction could potentially alter its chemical environments. Here, Shi et al. investigate how the interaction effects the nanostructures and carrier dynamic in CQDs, and subsequently introduce meniscus-guided coating technique to mitigate CQD fusion triggered by water adsorption.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Efficient Spray-Coated Colloidal Quantum Dot Solar Cells
    Kramer, Illan J.
    Minor, James C.
    Moreno-Bautista, Gabriel
    Rollny, Lisa
    Kanjanaboos, Pongsakorn
    Kopilovic, Damir
    Thon, Susanna M.
    Carey, Graham H.
    Chou, Kang Wei
    Zhitomirsky, David
    Amassian, Aram
    Sargent, Edward H.
    ADVANCED MATERIALS, 2015, 27 (01) : 116 - 121
  • [22] Colloidal quantum dot based solar cells: from materials to devices
    Jung Hoon Song
    Sohee Jeong
    Nano Convergence, 4
  • [23] Colloidal quantum dot based solar cells: from materials to devices
    Song, Jung Hoon
    Jeong, Sohee
    NANO CONVERGENCE, 2017, 4
  • [24] Folded-Light-Path Colloidal Quantum Dot Solar Cells
    Ghada I. Koleilat
    Illan J. Kramer
    Chris T. O. Wong
    Susanna M. Thon
    André J. Labelle
    Sjoerd Hoogland
    Edward H. Sargent
    Scientific Reports, 3
  • [25] Improving the performance of colloidal quantum-dot-sensitized solar cells
    Gimenez, Sixto
    Mora-Sero, Ivan
    Macor, Lorena
    Guijarro, Nestor
    Lana-Villarreal, Teresa
    Gomez, Roberto
    Diguna, Lina J.
    Shen, Qing
    Toyoda, Taro
    Bisquert, Juan
    NANOTECHNOLOGY, 2009, 20 (29)
  • [26] The Rise of Colloidal Lead Halide Perovskite Quantum Dot Solar Cells
    Ling, Xufeng
    Yuan, Jianyu
    Ma, Wanli
    ACCOUNTS OF MATERIALS RESEARCH, 2022, 3 (08): : 866 - 878
  • [27] Colloidal quantum dot ligand engineering for high performance solar cells
    Wang, Ruili
    Shang, Yuequn
    Kanjanaboos, Pongsakorn
    Zhou, Wenjia
    Ning, Zhijun
    Sargent, Edward H.
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (04) : 1130 - 1143
  • [28] Colloidal quantum dot solids for solution-processed solar cells
    Yuan, Mingjian
    Liu, Mengxia
    Sargent, Edward H.
    NATURE ENERGY, 2016, 1
  • [29] Folded-Light-Path Colloidal Quantum Dot Solar Cells
    Koleilat, Ghada I.
    Kramer, Illan J.
    Wong, Chris T. O.
    Thon, Susanna M.
    Labelle, Andre J.
    Hoogland, Sjoerd
    Sargent, Edward H.
    SCIENTIFIC REPORTS, 2013, 3
  • [30] Colloidal quantum-dot bulk-heterojunction solar cells
    Chao Ding
    Lixiu Zhang
    Qing Shen
    Liming Ding
    Journal of Semiconductors, 2021, 42 (11) : 11 - 14