Trapped-ion optical atomic clocks at the quantum limits

被引:0
|
作者
Leibrandt, David R. [1 ,2 ]
Brewer, Samuel M. [1 ]
Chen, Jwo-Sy [1 ,2 ]
Chou, Chin-Wen [1 ]
Hankin, Aaron M. [1 ]
Hume, David B. [1 ]
Wineland, David J. [1 ,2 ]
机构
[1] NIST, Time & Frequency Div, Boulder, CO 80305 USA
[2] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
关键词
SPECTROSCOPY;
D O I
暂无
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Frequency and its inverse, time, are the most accurately measured quantities. Historically, improvements in the accuracy of clocks have enabled advances in navigation, communication, and science. Since 1967, the definition of the International System (SI) second has been based on the frequency of a microwave transition in cesium, and present day cesium atomic clocks have a fractional uncertainty near 10(-16). Recently, a new type of atomic clock based on optical transitions has been developed, with a current fractional uncertainty near 10(-18) (approximately one second divided by the age of the universe), and they are rapidly improving. This talk presents a brief summary of the development of optical atomic clocks, with a focus on the Al+ quantum-logic clock developed at NIST. We discuss the current state-of-the-art in optical clock performance, and describe new applications in sensing and fundamental physics. Future directions in optical atomic clock research are also considered.
引用
收藏
页码:48 / 52
页数:5
相关论文
共 50 条
  • [31] Robust Quantum Memory in a Trapped-Ion Quantum Network Node
    Drmota, P.
    Main, D.
    Nadlinger, D. P.
    Nichol, B. C.
    Weber, M. A.
    Ainley, E. M.
    Agrawal, A.
    Srinivas, R.
    Araneda, G.
    Ballance, C. J.
    Lucas, D. M.
    PHYSICAL REVIEW LETTERS, 2023, 130 (09)
  • [32] Effect of trapped-ion heating on generalised Ramsey methods for suppressing frequency shifts caused by a probe field in atomic clocks
    Kuznetsov, S. N.
    Taichenachev, A., V
    Yudin, V., I
    Hunteman, N.
    Sanner, K.
    Tamm, K.
    Peik, E.
    QUANTUM ELECTRONICS, 2019, 49 (05) : 429 - 432
  • [33] Reversible Measurement on Quantum States of Trapped-Ion Qubits
    徐酉阳
    周飞
    Communications in Theoretical Physics, 2010, 53 (03) : 469 - 472
  • [34] Fast quantum logic gates with trapped-ion qubits
    V. M. Schäfer
    C. J. Ballance
    K. Thirumalai
    L. J. Stephenson
    T. G. Ballance
    A. M. Steane
    D. M. Lucas
    Nature, 2018, 555 : 75 - 78
  • [35] From transistor to trapped-ion computers for quantum chemistry
    M.-H. Yung
    J. Casanova
    A. Mezzacapo
    J. McClean
    L. Lamata
    A. Aspuru-Guzik
    E. Solano
    Scientific Reports, 4
  • [36] Simple experimental methods for trapped-ion quantum processors
    Stevens, D
    Brochard, J
    Steane, AM
    PHYSICAL REVIEW A, 1998, 58 (04): : 2750 - 2759
  • [37] Nuclear spin qubits in a trapped-ion quantum computer
    Feng, M.
    Xu, Y. Y.
    Zhou, F.
    Suter, D.
    PHYSICAL REVIEW A, 2009, 79 (05):
  • [38] Demonstration of the trapped-ion quantum CCD computer architecture
    J. M. Pino
    J. M. Dreiling
    C. Figgatt
    J. P. Gaebler
    S. A. Moses
    M. S. Allman
    C. H. Baldwin
    M. Foss-Feig
    D. Hayes
    K. Mayer
    C. Ryan-Anderson
    B. Neyenhuis
    Nature, 2021, 592 : 209 - 213
  • [39] Demonstration of Shor Encoding on a Trapped-Ion Quantum Computer
    Nguyen, Nhung H.
    Li, Muyuan
    Green, Alaina M.
    Alderete, C. Huerta
    Zhu, Yingyue
    Zhu, Daiwei
    Brown, Kenneth R.
    Linke, Norbert M.
    PHYSICAL REVIEW APPLIED, 2021, 16 (02):
  • [40] Backend compiler phases for trapped-ion quantum computers
    Schmale, Tobias
    Temesi, Bence
    Baishya, Alakesh
    Pulido-Mateo, Nicolas
    Krinner, Ludwig
    Dubielzig, Timko
    Ospelkaus, Christian
    Weimer, Hendrik
    Borcherding, Daniel
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM SOFTWARE (IEEE QSW 2022), 2022, : 32 - 37