Short-Term Traffic Flow Prediction with Recurrent Mixture Density Network

被引:1
|
作者
Chen, Mingjian [1 ]
Chen, Rui [1 ]
Cai, Fu [1 ]
Li, Wanli [1 ]
Guo, Naikun [1 ]
Li, Guangyun [1 ]
机构
[1] Informat Engn Univ, Inst Geospatial Informat, Zhengzhou 450000, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic congestion;
D O I
10.1155/2021/6393951
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Traffic situation awareness is the key factor for intelligent transportation systems (ITS) and smart city. Short-term traffic flow prediction is one of the challenging tasks of traffic situation awareness, which is useful for route planning, traffic congestion alleviation, emission reduction, and so on. Over the past few years, ubiquitous location acquisition techniques and sensors digitized the road networks and generated spatiotemporal data. Massive traffic data provide an opportunity for short-term traffic flow prediction in a data-driven manner. Most of the existing short-term traffic flow prediction methods can be divided into two categories: nonparametric and parametric. Traditional parametric methods failed to obtain accurate prediction, due to the nonlinear and stochastic characteristics of short-term traffic flow. Recently, deep learning methods have been studied widely in the fields of short-term prediction. These nonparametric methods yielded promising results in practical experiments. Motivated by the current study status, we dedicate this paper to a short-term traffic flow prediction approach based on the recurrent mixture density network, the combination of recurrent neural network (RNN), and mixture density network (MDN). This approach is implemented on real-world traffic flow data and demonstrates the prominent superiority. To the best of our knowledge, this is the first time that the recurrent mixture density network is applied to a real-world short-term traffic flow prediction task.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Short-term traffic flow prediction with linear conditional Gaussian Bayesian network
    Zhu, Zheng
    Peng, Bo
    Xiong, Chenfeng
    Zhang, Lei
    JOURNAL OF ADVANCED TRANSPORTATION, 2016, 50 (06) : 1111 - 1123
  • [32] Dynamic Graph Convolutional Network for Long Short-Term Traffic Flow Prediction
    Wang, Yan
    Ren, Qianqian
    SSRN, 2022,
  • [33] Short-term traffic flow prediction based on improved wavelet neural network
    Chen, Qiuxia
    Song, Ying
    Zhao, Jianfeng
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (14): : 8181 - 8190
  • [34] Analysis of spectrum and prediction for short-term traffic flow
    Weng Xiaoxiong
    Jian Jun
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 6, 2007, : 58 - +
  • [35] A Hybrid Method for Short-Term Traffic Flow Prediction
    Song, Wei
    Yin, Taolin
    2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2020, : 496 - 499
  • [36] Short-term Traffic Flow Prediction Based on ANFIS
    Chen Bao-ping
    Ma Zeng-qiang
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS, 2009, : 791 - +
  • [37] Short-term traffic flow prediction: From the perspective of traffic flow decomposition
    Chen, Li
    Zheng, Linjiang
    Yang, Jie
    Xia, Dong
    Liu, Weining
    NEUROCOMPUTING, 2020, 413 : 444 - 456
  • [38] Deep learning for short-term traffic flow prediction
    Polson, Nicholas G.
    Sokolov, Vadim O.
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2017, 79 : 1 - 17
  • [39] Application of LSTM in Short-term Traffic Flow Prediction
    Kang, Chuanli
    Zhang, Zhenyu
    2020 IEEE 5TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING (IEEE ICITE 2020), 2020, : 98 - 101
  • [40] Short-Term Traffic Flow Prediction Based on XGBoost
    Dong, Xuchen
    Lei, Ting
    Jin, Shangtai
    Hou, Zhongsheng
    PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 854 - 859