Deep Learning of Ultrasound Imaging for Evaluating Ambulatory Function of Individuals with Duchenne Muscular Dystrophy

被引:9
|
作者
Liao, Ai-Ho [1 ,2 ]
Chen, Jheng-Ru [3 ]
Liu, Shi-Hong [1 ]
Lu, Chun-Hao [3 ]
Lin, Chia-Wei [4 ]
Shieh, Jeng-Yi [5 ]
Weng, Wen-Chin [6 ,7 ,8 ]
Tsui, Po-Hsiang [3 ,9 ,10 ,11 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Grad Inst Biomed Engn, Taipei 106335, Taiwan
[2] Natl Def Med Ctr, Dept Biomed Engn, Taipei 114201, Taiwan
[3] Chang Gung Univ, Coll Med, Dept Med Imaging & Radiol Sci, Taoyuan 333323, Taiwan
[4] Natl Taiwan Univ Hosp Hsin Chu Branch, Dept Phys Med & Rehabil, Hsinchu 300195, Taiwan
[5] Natl Taiwan Univ Hosp, Dept Phys Med & Rehabil, Taipei 100225, Taiwan
[6] Natl Taiwan Univ Hosp, Dept Pediat, Taipei 100225, Taiwan
[7] Natl Taiwan Univ, Childrens Hosp, Dept Pediat Neurol, Taipei 100226, Taiwan
[8] Natl Taiwan Univ, Coll Med, Dept Pediat, Taipei 100233, Taiwan
[9] Chang Gung Univ, Inst Radiol Res, Taoyuan 333323, Taiwan
[10] Chang Gung Mem Hosp, Taoyuan 333323, Taiwan
[11] Chang Gung Mem Hosp, Dept Pediat, Div Pediat Gastroenterol, Taoyuan 333423, Taiwan
关键词
Duchenne muscular dystrophy; deep learning; ultrasound imaging; QUANTITATIVE MUSCLE ULTRASOUND; MANAGEMENT; DISEASE;
D O I
10.3390/diagnostics11060963
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Duchenne muscular dystrophy (DMD) results in loss of ambulation and premature death. Ultrasound provides real-time, safe, and cost-effective routine examinations. Deep learning allows the automatic generation of useful features for classification. This study utilized deep learning of ultrasound imaging for classifying patients with DMD based on their ambulatory function. A total of 85 individuals (including ambulatory and nonambulatory subjects) underwent ultrasound examinations of the gastrocnemius for deep learning of image data using LeNet, AlexNet, VGG-16, VGG-16(TL), VGG-19, and VGG-19(TL) models (the notation TL indicates fine-tuning pretrained models). Gradient-weighted class activation mapping (Grad-CAM) was used to visualize features recognized by the models. The classification performance was evaluated using the confusion matrix and receiver operating characteristic (ROC) curve analysis. The results show that each deep learning model endows muscle ultrasound imaging with the ability to enable DMD evaluations. The Grad-CAMs indicated that boundary visibility, muscular texture clarity, and posterior shadowing are relevant sonographic features recognized by the models for evaluating ambulatory function. Of the proposed models, VGG-19 provided satisfying classification performance (the area under the ROC curve: 0.98; accuracy: 94.18%) and feature recognition in terms of physical characteristics. Deep learning of muscle ultrasound is a potential strategy for DMD characterization.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [11] Pulmonary function tests for evaluating the severity of Duchenne muscular dystrophy disease
    Levine, Hagit
    Goldfarb, Itai
    Katz, Julia
    Carmeli, Moriah
    Shochat, Tzippy
    Mussaffi, Huda
    Aharoni, Sharon
    Prais, Dario
    Nevo, Yoram
    ACTA PAEDIATRICA, 2023, 112 (04) : 854 - 860
  • [12] Ambulatory capacity in Japanese patients with Duchenne muscular dystrophy
    Awano, Hiroyuki
    Itoh, Chieko
    Takeshima, Yasuhiro
    Lee, Tomoko
    Matsumoto, Masaaki
    Kida, Akihiro
    Kaise, Toshihiko
    Suzuki, Takeo
    Matsuo, Masafumi
    BRAIN & DEVELOPMENT, 2018, 40 (06): : 465 - 472
  • [13] Quantitative electromyography in ambulatory boys with Duchenne muscular dystrophy
    Verma, Sumit
    Lin, Jenny
    Travers, Curtis
    McCracken, Courtney
    Shah, Durga
    MUSCLE & NERVE, 2017, 56 (06) : 1168 - 1171
  • [14] Patterns of Growth in Ambulatory Males with Duchenne Muscular Dystrophy
    West, Nancy A.
    Yang, Michele L.
    Weitzenkamp, David A.
    Andrews, Jennifer
    Meaney, F. John
    Oleszek, Joyce
    Miller, Lisa A.
    Matthews, Dennis
    DiGuiseppi, Carolyn
    JOURNAL OF PEDIATRICS, 2013, 163 (06): : 1759 - U321
  • [15] Brain function in Duchenne muscular dystrophy
    Anderson, JL
    Head, SI
    Rae, C
    Morley, JW
    BRAIN, 2002, 125 : 4 - 13
  • [16] Hybrid QUS Radiomics: A Multimodal-Integrated Quantitative Ultrasound Radiomics for Assessing Ambulatory Function in Duchenne Muscular Dystrophy
    Yan, Dong
    Li, Qiang
    Lin, Chia-Wei
    Shieh, Jeng-Yi
    Weng, Wen-Chin
    Tsui, Po-Hsiang
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (02) : 835 - 845
  • [17] Appendicular lean mass index and motor function in ambulatory patients with Duchenne muscular dystrophy
    Kiefer, Michael
    Townsend, Elise
    Goncalves, Celina
    Shellenbarger, K. Courtney
    Gochyyev, Perman
    Wong, Brenda L.
    MUSCLE & NERVE, 2024, 70 (02) : 226 - 231
  • [18] Validity and Reliability of Quick Motor Function Test in Ambulatory Duchenne Muscular Dystrophy Patients
    Imamoglu, Sena
    Kenis-Coskun, Ozge
    Deveci, Mehmet
    Ozturk, Gulten
    Karadag-Saygi, Evrim
    JOURNAL OF PEDIATRIC NEUROLOGY, 2022, 20 (06) : 380 - 385
  • [19] Myocardial strain imaging in Duchenne muscular dystrophy
    Earl, Conner C.
    Soslow, Jonathan H.
    Markham, Larry W.
    Goergen, Craig J.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [20] Diaphragm imaging in Duchenne muscular dystrophy (DMD)
    D'Angelo, M.
    Pennati, F.
    Arrigoni, F.
    LoMauro, A.
    Gandossini, S.
    Russo, A.
    Aliverti, A.
    NEUROMUSCULAR DISORDERS, 2019, 29 : S154 - S155