Deep Learning of Ultrasound Imaging for Evaluating Ambulatory Function of Individuals with Duchenne Muscular Dystrophy

被引:9
|
作者
Liao, Ai-Ho [1 ,2 ]
Chen, Jheng-Ru [3 ]
Liu, Shi-Hong [1 ]
Lu, Chun-Hao [3 ]
Lin, Chia-Wei [4 ]
Shieh, Jeng-Yi [5 ]
Weng, Wen-Chin [6 ,7 ,8 ]
Tsui, Po-Hsiang [3 ,9 ,10 ,11 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Grad Inst Biomed Engn, Taipei 106335, Taiwan
[2] Natl Def Med Ctr, Dept Biomed Engn, Taipei 114201, Taiwan
[3] Chang Gung Univ, Coll Med, Dept Med Imaging & Radiol Sci, Taoyuan 333323, Taiwan
[4] Natl Taiwan Univ Hosp Hsin Chu Branch, Dept Phys Med & Rehabil, Hsinchu 300195, Taiwan
[5] Natl Taiwan Univ Hosp, Dept Phys Med & Rehabil, Taipei 100225, Taiwan
[6] Natl Taiwan Univ Hosp, Dept Pediat, Taipei 100225, Taiwan
[7] Natl Taiwan Univ, Childrens Hosp, Dept Pediat Neurol, Taipei 100226, Taiwan
[8] Natl Taiwan Univ, Coll Med, Dept Pediat, Taipei 100233, Taiwan
[9] Chang Gung Univ, Inst Radiol Res, Taoyuan 333323, Taiwan
[10] Chang Gung Mem Hosp, Taoyuan 333323, Taiwan
[11] Chang Gung Mem Hosp, Dept Pediat, Div Pediat Gastroenterol, Taoyuan 333423, Taiwan
关键词
Duchenne muscular dystrophy; deep learning; ultrasound imaging; QUANTITATIVE MUSCLE ULTRASOUND; MANAGEMENT; DISEASE;
D O I
10.3390/diagnostics11060963
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Duchenne muscular dystrophy (DMD) results in loss of ambulation and premature death. Ultrasound provides real-time, safe, and cost-effective routine examinations. Deep learning allows the automatic generation of useful features for classification. This study utilized deep learning of ultrasound imaging for classifying patients with DMD based on their ambulatory function. A total of 85 individuals (including ambulatory and nonambulatory subjects) underwent ultrasound examinations of the gastrocnemius for deep learning of image data using LeNet, AlexNet, VGG-16, VGG-16(TL), VGG-19, and VGG-19(TL) models (the notation TL indicates fine-tuning pretrained models). Gradient-weighted class activation mapping (Grad-CAM) was used to visualize features recognized by the models. The classification performance was evaluated using the confusion matrix and receiver operating characteristic (ROC) curve analysis. The results show that each deep learning model endows muscle ultrasound imaging with the ability to enable DMD evaluations. The Grad-CAMs indicated that boundary visibility, muscular texture clarity, and posterior shadowing are relevant sonographic features recognized by the models for evaluating ambulatory function. Of the proposed models, VGG-19 provided satisfying classification performance (the area under the ROC curve: 0.98; accuracy: 94.18%) and feature recognition in terms of physical characteristics. Deep learning of muscle ultrasound is a potential strategy for DMD characterization.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [1] AMBULATORY FUNCTION IN DUCHENNE MUSCULAR DYSTROPHY (DMD): THE CHARACTERISTIC TRAJECTORY AND VARIATION ACROSS INDIVIDUALS
    Signorovitch, J.
    Muntoni, F.
    Sajeev, G.
    Yao, Z.
    Ward, S. J.
    Abrams, K. R.
    VALUE IN HEALTH, 2018, 21 : S11 - S11
  • [2] Associations between body composition estimates and motor function in ambulatory individuals with Duchenne muscular dystrophy
    Kiefer, M.
    Townsend, E.
    Goncalves, C.
    Shellenbarger, K.
    Wong, B.
    NEUROMUSCULAR DISORDERS, 2022, 32 : S67 - S67
  • [3] Ultrasound attenuation imaging as a strategy for evaluation of early and late ambulatory functions in Duchenne muscular dystrophy
    Yan, Dong
    Li, Qiang
    Chuang, Ya-Wen
    Lu, Chun-Hao
    Yang, Ai-Ping
    Lin, Chia-Wei
    Shieh, Jeng-Yi
    Weng, Wen-Chin
    Tsui, Po-Hsiang
    MEDICAL PHYSICS, 2024, : 8074 - 8086
  • [4] Predicting trajectories of ambulatory function in Duchenne muscular dystrophy (DMD)
    Muntoni, F.
    Signorovitch, J.
    Goemans, N.
    Manzur, A.
    Done, N.
    Sajeev, G.
    Niks, E.
    Servais, L.
    Straub, V.
    de Groot, I.
    Ward, S.
    McDonald, C.
    NEUROMUSCULAR DISORDERS, 2022, 32 : S69 - S69
  • [5] Evaluation of muscular changes by ultrasound Nakagami imaging in Duchenne muscular dystrophy
    Wen-Chin Weng
    Po-Hsiang Tsui
    Chia-Wei Lin
    Chun-Hao Lu
    Chun-Yen Lin
    Jeng-Yi Shieh
    Frank Leigh Lu
    Ting-Wei Ee
    Kuan-Wen Wu
    Wang-Tso Lee
    Scientific Reports, 7
  • [6] Evaluation of muscular changes by ultrasound Nakagami imaging in Duchenne muscular dystrophy
    Weng, Wen-Chin
    Tsui, Po-Hsiang
    Lin, Chia-Wei
    Lu, Chun-Hao
    Lin, Chun-Yen
    Shieh, Jeng-Yi
    Lu, Frank Leigh
    Ee, Ting-Wei
    Wu, Kuan-Wen
    Lee, Wang-Tso
    SCIENTIFIC REPORTS, 2017, 7
  • [7] Instantaneous frequency as a new approach for evaluating the clinical severity of Duchenne muscular dystrophy through ultrasound imaging
    Weng, Wen-Chin
    Lin, Chia-Wei
    Shen, Hui-Chung
    Chang, Chien-Cheng
    Tsui, Po-Hsiang
    ULTRASONICS, 2019, 94 : 235 - 241
  • [8] Imaging respiratory muscle quality and function in Duchenne muscular dystrophy
    Barnard, Alison M.
    Lott, Donovan J.
    Batra, Abhinandan
    Triplett, William T.
    Forbes, Sean C.
    Riehl, Samuel L.
    Willcocks, Rebecca J.
    Smith, Barbara K.
    Vandenborne, Krista
    Walter, Glenn A.
    JOURNAL OF NEUROLOGY, 2019, 266 (11) : 2752 - 2763
  • [9] Imaging respiratory muscle quality and function in Duchenne muscular dystrophy
    Alison M. Barnard
    Donovan J. Lott
    Abhinandan Batra
    William T. Triplett
    Sean C. Forbes
    Samuel L. Riehl
    Rebecca J. Willcocks
    Barbara K. Smith
    Krista Vandenborne
    Glenn A. Walter
    Journal of Neurology, 2019, 266 : 2752 - 2763
  • [10] Relationships between ambulatory function and body composition in patients with Duchenne muscular dystrophy
    Wong, B.
    Signorovitch, J.
    Hu, S.
    Bange, J.
    Rybalsky, I.
    Shellenbarger, K.
    Tian, C.
    Swallow, E.
    Song, J.
    Ward, S.
    NEUROMUSCULAR DISORDERS, 2017, 27 : S103 - S103