Object Segmentation and Ground Truth in 3D Embryonic Imaging

被引:15
|
作者
Rajasekaran, Bhavna [1 ,2 ]
Uriu, Koichiro [1 ,2 ,3 ,6 ]
Valentin, Guillaume [1 ,4 ,7 ]
Tinevez, Jean-Yves [1 ,8 ]
Oates, Andrew C. [1 ,4 ,5 ,9 ]
机构
[1] Max Planck Inst Mol Cell Biol & Genet, Dresden, Germany
[2] Max Planck Inst Phys Komplexer Syst, Dresden, Germany
[3] RIKEN, Theoret Biol Lab, Saitama, Japan
[4] MRC Natl Inst Med Res, London, England
[5] UCL, Dept Cell & Dev Biol, London, England
[6] Kanazawa Univ, Grad Sch Nat Sci & Technol, Kanazawa, Ishikawa 9201192, Japan
[7] Genoway, Lyon, France
[8] Inst Pasteur, Imagopole CiTech, Paris, France
[9] Francis Crick Inst, Mill Hill Lab, London, England
来源
PLOS ONE | 2016年 / 11卷 / 06期
基金
欧洲研究理事会; 英国惠康基金; 日本学术振兴会; 英国医学研究理事会;
关键词
CELL BIOLOGY; MICROSCOPY; RECONSTRUCTION; TRACKING; MIGRATION; ACCURATE; NUCLEI;
D O I
10.1371/journal.pone.0150853
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] MESH SEGMENTATION WITH CONNECTING PARTS FOR 3D OBJECT PROTOTYPING
    Apaza-Agueero, Karl
    Silva, Luciano
    Bellon, Olga R. P.
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 16 - 20
  • [22] Robust object segmentation and parametrization of 3D lidar data
    Kapp, A
    2005 IEEE INTELLIGENT VEHICLES SYMPOSIUM PROCEEDINGS, 2005, : 694 - 699
  • [23] Object 3D position estimation based on instance segmentation
    Liu Chang-ji
    Hao Zhi-cheng
    Yang Jin-cheng
    Zhu Ming
    Nie Hai-tao
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (11) : 1535 - 1544
  • [24] OBJECT SEGMENTATION AND 3D STRUCTURE-FROM-MOTION
    KOLH, C
    BRAUN, J
    PERONA, P
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1994, 35 (04) : 1275 - 1275
  • [25] 3D object segmentation using B-Surface
    Chen, XJ
    Teoh, EK
    IMAGE AND VISION COMPUTING, 2005, 23 (14) : 1237 - 1249
  • [26] Integrated Object Segmentation and Tracking for 3D LIDAR Data
    Tuncer, Mehmet Ali Cagri
    Schulz, Dirk
    ICINCO: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 2, 2016, : 344 - 351
  • [27] Semantic Feature Mining for 3D Object Classification and Segmentation
    Lu, Weihao
    Zhao, Dezong
    Premebida, Cristiano
    Chen, Wen-Hua
    Tian, Daxin
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 13539 - 13545
  • [28] Segmentation of 3D acoustic images for object recognition purposes
    Patel, RC
    Greig, AR
    OCEANS'98 - CONFERENCE PROCEEDINGS, VOLS 1-3, 1998, : 577 - 581
  • [29] A Method for 3D Scene Description and Segmentation in an Object Record
    Chen Tingbiao(Department of Radio Engineering
    The Journal of China Universities of Posts and Telecommunications, 1996, (01) : 37 - 42
  • [30] Using 3D structure and anisotropic diffusion for object segmentation
    Izquierdo, E
    Ghanbari, M
    SEVENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND ITS APPLICATIONS, 1999, (465): : 532 - 536