A genetic algorithm for the ligand-protein docking problem

被引:36
|
作者
de Magalhaes, CS
Barbosa, HJC
Dardenne, LE
机构
[1] Lab Nacl Comp Cientif, Dept Matemat Aplicada & Computac, BR-25651075 Petropolis, RJ, Brazil
[2] Lab Nacl Comp Cientif, Dept Mecan Computac, BR-25651075 Petropolis, RJ, Brazil
关键词
ligand-protein docking; flexible docking; genetic algorithms;
D O I
10.1590/S1415-47572004000400022
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We analyzed the performance of a real coded "steady-state" genetic algorithm (SSGA) using a grid-based methodology in docking five HIV-1 protease-ligand complexes having known three-dimensional structures. All ligands tested are highly flexible, having more than 10 conformational degrees of freedom. The SSGA was tested for. the rigid and flexible ligand docking cases. The implemented genetic algorithm was able to dock successfully rigid and flexible ligand molecules, but with a decreasing performance when the number of ligand conformational degrees of freedom increased. The docked lowest-energy structures have root mean square deviation (RMSD) with respect to the corresponding experimental crystallographic structure ranging from 0.037 Angstrom to 0.090 Angstrom in the rigid docking, and 0.420 Angstrom to 1.943 Angstrom in the flexible docking. We found that not only the number of ligand conformational degrees of freedom is an important aspect to the algorithm performance, but also that the more internal dihedral angles are critical. Furthermore, our results showed that the initial population distribution can be relevant for the algorithm performance.
引用
收藏
页码:605 / 610
页数:6
相关论文
共 50 条
  • [31] FLEXIBLE LIGAND DOCKING USING THE GENETIC ALGORITHM
    OSHIRO, C
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 208 : 136 - COMP
  • [32] Accurate ligand-protein docking in CASP15 using the ClusPro LigTBM server
    Kotelnikov, Sergei
    Ashizawa, Ryota
    Popov, Konstantin I.
    Khan, Omeir
    Ignatov, Mikhail
    Li, Stan Xiaogang
    Hassan, Mosavverul
    Coutsias, Evangelos A.
    Poda, Gennady
    Padhorny, Dzmitry
    Tropsha, Alexander
    Vajda, Sandor
    Kozakov, Dima
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2023, 91 (12) : 1822 - 1828
  • [33] Predicting ligand-protein interactions
    Crunkhorn, Sarah
    NATURE REVIEWS DRUG DISCOVERY, 2024, 23 (07) : 499 - 499
  • [34] Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein Recognition Process: An Overview
    Salmaso, Veronica
    Moro, Stefano
    FRONTIERS IN PHARMACOLOGY, 2018, 9
  • [35] LIGAND-PROTEIN DOCKING AND MOLECULAR DYNAMICS SIMULATIONS AND APPLICATIONS IN CYTOCHROMES P450
    Vermeulen, Nico P. E.
    de Graaf, Chris
    Stjernschantz, Eva
    Feenstra, Anton
    Oostenbrink, B. Chris
    DRUG METABOLISM REVIEWS, 2007, 39 : 13 - 13
  • [36] Protein docking using a genetic algorithm
    Gardiner, EJ
    Willett, P
    Artymiuk, PJ
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2001, 44 (01) : 44 - 56
  • [37] Structural consensus in ligand-protein docking identifies recognition peptide motifs that bind streptavidin
    Shah, NK
    Rejto, PA
    Verkhivker, GM
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1997, 28 (03) : 421 - 433
  • [38] GANM: A protein-ligand docking approach based on genetic algorithm and normal modes
    Lima, Angelica Nakagawa
    Philot, Eric Allison
    Perahia, David
    Kimus Braz, Antonio Sergio
    Scott, Luis P. B.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (02) : 511 - 520
  • [39] Combining a genetic algorithm with a linear scaling semiempirical method for protein-ligand docking
    Thiriot, Eddy
    Monard, Gerald
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2009, 898 (1-3): : 31 - 41
  • [40] HIGA: A Running History Information Guided Genetic Algorithm for Protein-Ligand Docking
    Guan, Boxin
    Zhang, Changsheng
    Zhao, Yuhai
    MOLECULES, 2017, 22 (12):