GROUND STATE SOLUTIONS FOR ASYMPTOTICALLY PERIODIC QUASILINEAR SCHRODINGER EQUATIONS WITH CRITICAL GROWTH

被引:8
|
作者
Xue, Yanfang [1 ,2 ]
Tang, Chunlei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400700, Peoples R China
[2] Xin Yang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotically periodic; Sobolev critical exponent; ground state solution; Nehari manifold; CONCENTRATION-COMPACTNESS PRINCIPLE; CRITICAL SOBOLEV EXPONENTS; ELLIPTIC-EQUATIONS; SOLITON-SOLUTIONS; PERTURBATION METHOD; MULTIPLE SOLUTIONS; EXISTENCE; PART; UNIQUENESS; CALCULUS;
D O I
10.3934/cpaa.2018054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the existence of ground state solutions for the following quasilinear Schrodinger equation: -Delta u + V(x)u -Delta(u(2))u=K(x)vertical bar u vertical bar(22*-2)u+g(x,u),x is an element of R-N (1) where N > 3, V, g are asymptotically periodic functions in x. By combining variational methods and the concentration-compactness principle, we obtain a ground state solution for equation (I) under a new reformative condition which unify the asymptotic processes of V, g at infinity.
引用
收藏
页码:1121 / 1145
页数:25
相关论文
共 50 条