GENERATIVE ADVERSARIAL SOURCE SEPARATION

被引:0
|
作者
Subakan, Y. Cem [1 ]
Smaragdis, Paris [1 ,2 ]
机构
[1] UIUC, Urbana, IL 61801 USA
[2] Adobe Syst, San Jose, CA USA
基金
美国国家科学基金会;
关键词
Generative Adversarial Networks; Source Separation; Generative Models;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Generative source separation methods such as non-negative matrix factorization (NMF) or auto-encoders, rely on the assumption of an output probability density. Generative Adversarial Networks (GANs) can learn data distributions without needing a parametric assumption on the output density. We show on a speech source separation experiment that, a multi-layer perceptron trained with a Wasserstein-GAN formulation outperforms NMF, auto-encoders trained with maximum likelihood, and variational auto-encoders in terms of source to distortion ratio.
引用
收藏
页码:26 / 30
页数:5
相关论文
共 50 条
  • [21] Separation and recognition of overlapping handwritten digit images based on generative adversarial networks
    Wei, Jiacheng
    Dong, Ran
    Cai, Chengtao
    Lin, Xiaozhu
    Song, Huijia
    Wang, Xiangyu
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 45 (11): : 2226 - 2234
  • [22] Generative adversarial networks for single channel separation of convolutive mixed speech signals
    Li, Yang
    Zhang, Wei-Tao
    Lou, Shun-Tian
    NEUROCOMPUTING, 2021, 438 : 63 - 71
  • [23] Generative Adversarial Transformers
    Hudson, Drew A.
    Zitnick, C. Lawrence
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [24] Generative Adversarial Nets
    Goodfellow, Ian J.
    Pouget-Abadie, Jean
    Mirza, Mehdi
    Xu, Bing
    Warde-Farley, David
    Ozair, Sherjil
    Courville, Aaron
    Bengio, Yoshua
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27 : 2672 - 2680
  • [25] Generative Adversarial Networks
    Goodfellow, Ian
    Pouget-Abadie, Jean
    Mirza, Mehdi
    Xu, Bing
    Warde-Farley, David
    Ozair, Sherjil
    Courville, Aaron
    Bengio, Yoshua
    COMMUNICATIONS OF THE ACM, 2020, 63 (11) : 139 - 144
  • [26] The Generative Adversarial Brain
    Gershman, Samuel J.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2019, 2
  • [27] Generative Adversarial Perturbations
    Poursaeed, Omid
    Katsman, Isay
    Gao, Bicheng
    Belongie, Serge
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4422 - 4431
  • [28] Generative adversarial network for image deblurring using generative adversarial constraint loss
    Ji, Y.
    Dai, Y.
    Zhao, K.
    Li, S.
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 1180 - 1187
  • [29] Conditional Generative Adversarial Networks with Adversarial Attack and Defense for Generative Data Augmentation
    Baek, Francis
    Kim, Daeho
    Park, Somin
    Kim, Hyoungkwan
    Lee, SangHyun
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2022, 36 (03)
  • [30] Anti-Forensics of Audio Source Identification Using Generative Adversarial Network
    Li, Xiaowen
    Yan, Diqun
    Dong, Li
    Wang, Rangding
    IEEE ACCESS, 2019, 7 : 184332 - 184339