Homomorphisms of matrix algebras and constructions of Butson-Hadamard matrices

被引:1
|
作者
Cathain, Padraig O. [1 ]
Swartz, Eric [2 ]
机构
[1] Worcester Polytech Inst, Dept Math Sci, 100 Inst Rd, Worcester, MA 01609 USA
[2] Coll William & Mary, Dept Math, POB 8795, Williamsburg, VA 23187 USA
关键词
Butson; Hadamard;
D O I
10.1016/j.disc.2019.111606
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An n x n matrix H is Butson-Hadamard if its entries are kth roots of unity and it satisfies HH* = nI(n). Write BH(n, k) for the set of such matrices. Suppose that k = p(alpha)q(beta )where p and q are primes and alpha >= 1. A recent result of Ostergard and Paavola uses a matrix H is an element of BH(n, pk) to construct H' is an element of BH(pn, k). We simplify the proof of this result and remove the restriction on the number of prime divisors of k. More precisely, we prove that if k = mt, and each prime divisor of k divides t, then we can construct a matrix H' is an element of BH(mn, t) from any H is an element of BH(n, k). (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:4
相关论文
共 50 条