Effect of ionic liquid in a pressurized reactor to enhance CO2 photocatalytic reduction at TiO2 modified by gold nanoparticles

被引:11
|
作者
Perini, Joao Angelo Lima [1 ,2 ]
Irikura, Kallyni [1 ,2 ]
Torquato, Lilian D. Moura [1 ,2 ]
Flor, Jader Barbosa da S. [1 ]
Zanoni, Maria V. Boldrin [1 ,2 ]
机构
[1] Sao Paulo State Univ UNESP, Inst Chem, Araraquara, Brazil
[2] Sao Paulo State Univ UNESP, Natl Inst Alternat Technl Detect Toxicol Evaluat, Inst Chem, Araraquara, Brazil
基金
巴西圣保罗研究基金会;
关键词
Surface plasmon resonance; Solar simulator; Quantum yield; Solubility; BMIM-BF4; CARBON-DIOXIDE; TITANIUM-DIOXIDE; NANOTUBE ARRAYS; NANOROD ARRAYS; DOPED TIO2; PHOTOREDUCTION; NANOCOMPOSITES; ABSORPTION; ELECTRODES; CONVERSION;
D O I
10.1016/j.jcat.2021.11.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work describes the synergic effect of gold nanoparticles as co-catalyst on TiO2 nanotubes (TNT/AuNP) in aqueous medium containing the ionic liquid (IL) 1-Butyl-3-methylimidazolium tetrafluorobo-rate, in a pressurized photocatalytic reactor, as a good strategy to enhance CO2 conversion into value-added products. The surface plasmon resonance of the gold NPs improve the photoexcitation under vis-ible light and slightly change the TNT band gap from 3.2 to 2.9 eV. Methanol production using TNT/AuNP in aqueous medium containing 2% (v/v) BMIM-BF4, 1 g L-1 Na2SO3 as a hole scavenger, under 5 atm pressure and solar irradiation, produce up to 279.6 mM (mmol L-1) of methanol and 98.8 mM of methane, with the quantum yield of 1.12% at 440 nm. Isotope-labeled studies by GC/MS proved that (CO2)-C-13 is the source for photoproduction of (CH3OH)-C-13. The results indicate that the combination of the Au co-catalyst size, high pressure, and IL can provide efficient modulation of CO2 conversion. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:588 / 600
页数:13
相关论文
共 50 条
  • [21] The use of TiO2 nanoparticles to enhance CO2 absorption
    Zhang, Yu
    Zhao, Bo
    Zhuo, Yu-Qun
    Wang, Shu-Juan
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2016, 37 (12): : 2697 - 2702
  • [22] The use of TiO2 nanoparticles to enhance CO2 absorption
    Zhang, Yu
    Zhao, Bo
    Jiang, Jiazong
    Zhuo, Yuqun
    Wang, Shujuan
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2016, 50 : 49 - 56
  • [23] Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2
    Nikokavoura, Aspasia
    Trapalis, Christos
    APPLIED SURFACE SCIENCE, 2017, 391 : 149 - 174
  • [24] Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors
    Habisreutinger, Severin N.
    Schmidt-Mende, Lukas
    Stolarczyk, Jacek K.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (29) : 7372 - 7408
  • [25] Ag quantum dots modified hierarchically porous and defective TiO2 nanoparticles for improved photocatalytic CO2 reduction
    Li, Guohui
    Sun, Yuanyuan
    Zhang, Qingming
    Gao, Zhe
    Sun, Wei
    Zhou, Xiaoxia
    CHEMICAL ENGINEERING JOURNAL, 2021, 410
  • [26] Electrochemical study of TiO2 modified with silver nanoparticles upon CO2 reduction
    Cueto-Gomez, Luisa F.
    Garcia-Gomez, Nora A.
    Mosqueda, Hugo A.
    Sanchez, Eduardo M.
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2014, 44 (05) : 675 - 682
  • [27] Electrochemical study of TiO2 modified with silver nanoparticles upon CO2 reduction
    Luisa F. Cueto-Gómez
    Nora A. Garcia-Gómez
    Hugo A. Mosqueda
    Eduardo M. Sánchez
    Journal of Applied Electrochemistry, 2014, 44 : 675 - 682
  • [28] Photocatalytic CO2 reduction using a molecular cobalt complex deposited on TiO2 nanoparticles
    Jin, Tong
    Liu, Chao
    Li, Gonghu
    CHEMICAL COMMUNICATIONS, 2014, 50 (47) : 6221 - 6224
  • [29] Photocatalytic Reduction of CO2 on Mesoporous TiO2 Modified with Ag/Cu Bimetallic Nanostructures
    M. L. Ovcharov
    V. V. Shvalagin
    V. M. Granchak
    Theoretical and Experimental Chemistry, 2014, 50 : 175 - 180
  • [30] Photocatalytic Reduction of CO2 on Mesoporous TiO2 Modified with Ag/Cu Bimetallic Nanostructures
    Ovcharov, M. L.
    Shvalagin, V. V.
    Granchak, V. M.
    THEORETICAL AND EXPERIMENTAL CHEMISTRY, 2014, 50 (03) : 175 - 180