Comparison of Methods for Feature Selection in Clustering of High-Dimensional RNA-Sequencing Data to Identify Cancer Subtypes

被引:10
|
作者
Kallberg, David [1 ,2 ]
Vidman, Linda [2 ,3 ]
Ryden, Patrik [2 ]
机构
[1] Umea Univ, Dept Stat, USBE, Umea, Sweden
[2] Umea Univ, Dept Math & Math Stat, Umea, Sweden
[3] Umea Univ, Dept Radiat Sci, Oncol, Umea, Sweden
基金
瑞典研究理事会;
关键词
feature selection; gene selection; RNA-seq; cancer subtypes; high-dimensional;
D O I
10.3389/fgene.2021.632620
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Cancer subtype identification is important to facilitate cancer diagnosis and select effective treatments. Clustering of cancer patients based on high-dimensional RNA-sequencing data can be used to detect novel subtypes, but only a subset of the features (e.g., genes) contains information related to the cancer subtype. Therefore, it is reasonable to assume that the clustering should be based on a set of carefully selected features rather than all features. Several feature selection methods have been proposed, but how and when to use these methods are still poorly understood. Thirteen feature selection methods were evaluated on four human cancer data sets, all with known subtypes (gold standards), which were only used for evaluation. The methods were characterized by considering mean expression and standard deviation (SD) of the selected genes, the overlap with other methods and their clustering performance, obtained comparing the clustering result with the gold standard using the adjusted Rand index (ARI). The results were compared to a supervised approach as a positive control and two negative controls in which either a random selection of genes or all genes were included. For all data sets, the best feature selection approach outperformed the negative control and for two data sets the gain was substantial with ARI increasing from (-0.01, 0.39) to (0.66, 0.72), respectively. No feature selection method completely outperformed the others but using the dip-rest statistic to select 1000 genes was overall a good choice. The commonly used approach, where genes with the highest SDs are selected, did not perform well in our study.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Visualizing High-dimensional single-cell RNA-sequencing data through multiple Random Projections
    Tasoulis, Sotiris K.
    Vrahatis, Aristidis G.
    Georgakopoulos, Spiros V.
    Plagianakos, Vassilis P.
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 5448 - 5450
  • [32] Bayesian variable selection in clustering high-dimensional data
    Tadesse, MG
    Sha, N
    Vannucci, M
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (470) : 602 - 617
  • [33] Clustering of high-dimensional gene expression data with feature filtering methods and diffusion maps
    Xu, Rui
    Damelin, Steven
    Nadler, Boaz
    Wunsch, Donald C., II
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2010, 48 (2-3) : 91 - 98
  • [34] Clustering of high-dimensional gene expression data with feature filtering methods and diffusion maps
    Xu, Rui
    Damelin, Steven
    Nadler, Boaz
    Wunsch, Donald C., II
    BMEI 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOL 1, 2008, : 245 - +
  • [35] Neighborhood Component Feature Selection for High-Dimensional Data
    Yang, Wei
    Wang, Kuanquan
    Zuo, Wangmeng
    JOURNAL OF COMPUTERS, 2012, 7 (01) : 161 - 168
  • [36] Efficient feature selection filters for high-dimensional data
    Ferreira, Artur J.
    Figueiredo, Mario A. T.
    PATTERN RECOGNITION LETTERS, 2012, 33 (13) : 1794 - 1804
  • [37] Simultaneous Feature and Model Selection for High-Dimensional Data
    Perolini, Alessandro
    Guerif, Sebastien
    2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011), 2011, : 47 - 50
  • [38] Simultaneous Feature Selection and Classification for High-Dimensional Data
    Pai, Vriddhi
    Gupta, Subhash Chand
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON GREEN COMPUTING AND INTERNET OF THINGS (ICGCIOT 2018), 2018, : 153 - 158
  • [39] High-Dimensional Software Engineering Data and Feature Selection
    Wang, Huanjing
    Khoshgoftaar, Taghi M.
    Gao, Kehan
    Seliya, Naeem
    ICTAI: 2009 21ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, 2009, : 83 - +
  • [40] Feature Selection for High-Dimensional Data: The Issue of Stability
    Pes, Barbara
    2017 IEEE 26TH INTERNATIONAL CONFERENCE ON ENABLING TECHNOLOGIES - INFRASTRUCTURE FOR COLLABORATIVE ENTERPRISES (WETICE), 2017, : 170 - 175