Deep Learning Methods for Multi-Channel EEG-Based Emotion Recognition

被引:29
|
作者
Olamat, Ali [1 ]
Ozel, Pinar [2 ]
Atasever, Sema [3 ]
机构
[1] Yildiz Tech Univ, Biomed Engn Dept, Istanbul, Turkey
[2] Nevsehir Haci Bektas Veli Univ, Biomed Engn Dept, Nevsehir, Turkey
[3] Nevsehir Haci Bektas Veli Univ, Comp Engn Dept, Nevsehir, Turkey
关键词
Multi-variate empirical mode decomposition; emotional state analysis; transfer learning; AutoKeras; EEG; EMPIRICAL MODE DECOMPOSITION; CONVOLUTIONAL NEURAL-NETWORKS; FEATURES; ENTROPY; SIGNALS; EMD; CLASSIFICATION;
D O I
10.1142/S0129065722500216
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently, Fourier-based, wavelet-based, and Hilbert-based time-frequency techniques have generated considerable interest in classification studies for emotion recognition in human-computer interface investigations. Empirical mode decomposition (EMD), one of the Hilbert-based time-frequency techniques, has been developed as a tool for adaptive signal processing. Additionally, the multi-variate version strongly influences designing the common oscillation structure of a multi-channel signal by utilizing the common instantaneous concepts of frequency and bandwidth. Additionally, electroencephalographic (EEG) signals are strongly preferred for comprehending emotion recognition perspectives in human-machine interactions. This study aims to herald an emotion detection design via EEG signal decomposition using multi-variate empirical mode decomposition (MEMD). For emotion recognition, the SJTU emotion EEG dataset (SEED) is classified using deep learning methods. Convolutional neural networks (AlexNet, DenseNet-201, ResNet-101, and ResNet50) and AutoKeras architectures are selected for image classification. The proposed framework reaches 99% and 100% classification accuracy when transfer learning methods and the AutoKeras method are used, respectively.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [21] Transformer-based ensemble deep learning model for EEG-based emotion recognition
    Xiaopeng Si
    Dong Huang
    Yulin Sun
    Shudi Huang
    He Huang
    Dong Ming
    Brain Science Advances, 2023, 9 (03) : 210 - 223
  • [22] A review on EEG-based multimodal learning for emotion recognition
    Rajasekhar Pillalamarri
    Udhayakumar Shanmugam
    Artificial Intelligence Review, 58 (5)
  • [23] EEG-Based Emotion Recognition with Similarity Learning Network
    Wang, Yixin
    Qiu, Shuang
    Li, Jinpeng
    Ma, Xuelin
    Liang, Zhiyue
    Li, Hui
    He, Huiguang
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 1209 - 1212
  • [24] Feature Transfer Learning in EEG-based Emotion Recognition
    Xue, Bing
    Lv, Zhao
    Xue, Jingyi
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 3608 - 3611
  • [25] Unsupervised Feature Learning for EEG-based Emotion Recognition
    Lan, Zirui
    Sourina, Olga
    Wang, Lipo
    Scherer, Reinhold
    Mueller-Putz, Gernot
    2017 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW), 2017, : 182 - 185
  • [26] Deep learning for EEG-based biometric recognition
    Maiorana, Emanuele
    NEUROCOMPUTING, 2020, 410 : 374 - 386
  • [27] Multi-Channel EEG Based Emotion Recognition Using Temporal Convolutional Network and Broad Learning System
    Jia, Xue
    Zhang, Tong
    Chen, C. L. Philip
    Liu, Zhulin
    Chen, Long
    Wen, Guihua
    Hu, Bin
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 2452 - 2457
  • [28] EEG-based Emotion Recognition Using Multi-scale Window Deep Forest
    Yao, Huifang
    He, Hong
    Wang, Shilong
    Xie, Zhangping
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 381 - 386
  • [29] Enhanced deep capsule network for EEG-based emotion recognition
    Cizmeci, Huseyin
    Ozcan, Caner
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (02) : 463 - 469
  • [30] Multimodal Deep Learning Model for Subject-Independent EEG-based Emotion Recognition
    Dharia, Shyamal Y.
    Valderrama, Camilo E.
    Camorlinga, Sergio G.
    2023 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE, 2023,