Exactly solved Frenkel-Kontorova model with multiple subwells

被引:2
|
作者
Lee, SC [1 ]
Tzeng, WJ
机构
[1] Acad Sinica, Inst Phys, Taipei 115, Taiwan
[2] Tamkang Univ, Dept Phys, Taipei 251, Taiwan
关键词
D O I
10.1103/PhysRevB.66.184108
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We exactly solve a class of Frenkel-Kontorova models with a periodic potential composed of piecewise convex parabolas having the same curvature. All rotationally ordered stable configurations can be depicted with appropriate phase parameters. The elements of a phase parameter are grouped into subcommensurate clusters. Phase transitions, manifested in the gap structure changes previously seen in numerical simulations, correspond to the splitting and merging of subcommensurate clusters with the appearance of incommensurate nonrecurrent rotationally ordered stable configurations. Through the notion of elementary phase shifts, all the possibilities for the existence of configurations degenerate with the ground state are scrutinized and the domains of stability in the phase diagram are characterized. At the boundaries of a domain of stability, nonrecurrent minimum energy configurations are degenerate with the ground state configurations and phase transitions occur.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [21] Entanglement of solitons in the Frenkel-Kontorova model
    Marcovitch, S.
    Reznik, B.
    PHYSICAL REVIEW A, 2008, 78 (05):
  • [22] Heat conduction in the Frenkel-Kontorova model
    Hu, BB
    Yang, L
    CHAOS, 2005, 15 (01)
  • [23] PROPERTIES OF SOLITONS IN THE FRENKEL-KONTOROVA MODEL
    JOOS, B
    SOLID STATE COMMUNICATIONS, 1982, 42 (10) : 709 - 713
  • [24] Nonlinear dynamics of the Frenkel-Kontorova model
    Braun, OM
    Kivshar, YS
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 306 (1-2): : 1 - 108
  • [25] Farey fractions and the Frenkel-Kontorova model
    Phys Rev E., 3-A (2628):
  • [26] On the sliding dynamics of the Frenkel-Kontorova model
    Strunz, T
    Elmer, FJ
    PHYSICS OF SLIDING FRICTION, 1996, 311 : 149 - 161
  • [27] An unorthodox analysis of the Frenkel-Kontorova model
    Nasilowski, R
    PHYSICA A, 1996, 230 (1-2): : 266 - 284
  • [28] MOBILITY OF A DISLOCATION IN FRENKEL-KONTOROVA MODEL
    KRATOCHVIL, J
    INDENBOM, VL
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1963, 13 (11) : 814 - &
  • [29] Sliding friction in the Frenkel-Kontorova model
    Granato, E
    Baldan, MR
    Ying, SC
    PHYSICS OF SLIDING FRICTION, 1996, 311 : 103 - 118
  • [30] Diffusion as a singular homogenization of the Frenkel-Kontorova model
    Alibaud, N.
    Briani, A.
    Monneaue, R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (4-5) : 785 - 815