Personalized Donor-Recipient Matching for Organ Transplantation

被引:0
|
作者
Yoon, Jinsung [1 ]
Alaa, Ahmed M. [1 ]
Cadeiras, Martin [2 ]
van der Schaar, Mihaela [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Los Angeles, CA 90095 USA
关键词
HEART-TRANSPLANTATION; UNITED NETWORK; CARDIAC TRANSPLANTATION; SURVIVAL; IMPACT; ADMISSIONS; REGRESSION; MORTALITY; OUTCOMES; TREES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Organ transplants can improve the life expectancy and quality of life for the recipient but carry the risk of serious postoperative complications, such as septic shock and organ rejection. The probability of a successful transplant depends in a very subtle fashion on compatibility between the donor and the recipient -but current medical practice is short of domain knowledge regarding the complex nature of recipient-donor compatibility. Hence a data-driven approach for learning compatibility has the potential for significant improvements in match quality. This paper proposes a novel system (ConfidentMatch) that is trained using data from electronic health records. ConfidentMatch predicts the success of an organ transplant (in terms of the 3-year survival rates) on the basis of clinical and demographic traits of the donor and recipient. ConfidentMatch captures the heterogeneity of the donor and recipient traits by optimally dividing the feature space into clusters and constructing different optimal predictive models to each cluster. The system controls the complexity of the learned predictive model in a way that allows for assuring more granular and accurate predictions for a larger number of potential recipient-donor pairs, thereby ensuring that predictions are " personalized" and tailored to individual characteristics to the finest possible granularity. Experiments conducted on the UNOS heart transplant dataset show the superiority of the prognostic value of ConfidentMatch to other competing benchmarks; ConfidentMatch can provide predictions of success with 95% accuracy for 5,489 patients of a total population of 9,620 patients, which corresponds to 410 more patients than the most competitive benchmark algorithm (DeepBoost).
引用
下载
收藏
页码:1647 / 1654
页数:8
相关论文
共 50 条
  • [21] Is donor-recipient matching by weight alone enough in heart transplantation? The effect of organ oversizing and matching by predicted heart mass on survival
    Giblin, G. Gerard
    Murphy, L.
    Saiva, L.
    Mahon, N.
    Chughtai, Z.
    Healy, D.
    Mccarthy, J.
    Nolke, L.
    Mcguinness, J.
    Joyce, E.
    O'neill, J.
    EUROPEAN JOURNAL OF HEART FAILURE, 2020, 22 : 379 - 379
  • [22] Analysis of Discrepancy between Expected and Actual Donor-Recipient Matching in Heart Transplantation
    Chen, C. R.
    Connellan, M.
    Granger, E.
    Kawanishi, Y.
    Jabbour, A.
    Macdonald, P.
    Muthiah, K.
    Hayward, C.
    Dhital, K.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2019, 38 (04): : S266 - S266
  • [23] Machine-learning-assisted donor-recipient matching for orthotopic liver transplantation
    Bezjak, M.
    Stresec, I.
    Kocman, B.
    Jadrijevic, S.
    Basic, B. Dalbelo
    Antonijevic, M.
    Kanizaj, T. Filipec
    Mikulic, D.
    TRANSPLANTATION, 2023, 107 (09) : 196 - 197
  • [24] Association Between Donor-Recipient Genetic Matching and Acute Rejection in Kidney Transplantation
    Cao, R.
    Arthur, V.
    Chen, J.
    Keating, B.
    Dorr, C.
    Schladt, D.
    Onyeaghala, G.
    Mannon, R.
    Matas, A.
    Remmel, R.
    Pankratz, N.
    Wu, B.
    Oetting, W.
    Jacobson, P.
    Israni, A.
    Guan, W.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2021, 21 : 518 - 518
  • [25] Choosing wisely: incorporating appropriate donor-recipient size matching in heart transplantation
    Guglin, Maya
    Kozaily, Elie
    Kittleson, Michelle M.
    HEART FAILURE REVIEWS, 2023, 28 (04) : 967 - 975
  • [26] The Impact of Donor-Recipient Gender Matching on Survival and Rejection after Cardiac Transplantation
    Bello, R. A.
    D'Alessandro, D. A.
    Maybaum, S.
    Goldstein, D. J.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2009, 28 (02): : S185 - S186
  • [27] Validation of artificial neural networks as a methodology for donor-recipient matching for liver transplantation
    Dolores Ayllon, Maria
    Ciria, Ruben
    Cruz-Ramirez, Manuel
    Perez-Ortiz, Maria
    Gomez, Irene
    Valente, Roberto
    O'Grady, John
    de la Mata, Manuel
    Hervas-Martinez, Cesar
    Heaton, Nigel D.
    Briceno, Javier
    LIVER TRANSPLANTATION, 2018, 24 (02) : 192 - 203
  • [28] MLC INCOMPATIBILITY INDEX FOR DONOR-RECIPIENT MATCHING
    UEHLING, DT
    HUSSEY, JL
    BELZER, FO
    KAN, C
    BACH, FH
    TRANSPLANTATION PROCEEDINGS, 1977, 9 (01) : 103 - 105
  • [29] Choosing wisely: incorporating appropriate donor-recipient size matching in heart transplantation
    Maya Guglin
    Elie Kozaily
    Michelle M. Kittleson
    Heart Failure Reviews, 2023, 28 : 967 - 975
  • [30] Nonimmunologic Donor-Recipient Pairing, HLA Matching, and Graft Loss in Deceased Donor Kidney Transplantation
    Vinson, Amanda Jean
    Kiberd, Bryce A.
    Davis, Roger B.
    Tennankore, Karthik K.
    TRANSPLANTATION DIRECT, 2019, 5 (01):