Personalized Donor-Recipient Matching for Organ Transplantation

被引:0
|
作者
Yoon, Jinsung [1 ]
Alaa, Ahmed M. [1 ]
Cadeiras, Martin [2 ]
van der Schaar, Mihaela [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Los Angeles, CA 90095 USA
关键词
HEART-TRANSPLANTATION; UNITED NETWORK; CARDIAC TRANSPLANTATION; SURVIVAL; IMPACT; ADMISSIONS; REGRESSION; MORTALITY; OUTCOMES; TREES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Organ transplants can improve the life expectancy and quality of life for the recipient but carry the risk of serious postoperative complications, such as septic shock and organ rejection. The probability of a successful transplant depends in a very subtle fashion on compatibility between the donor and the recipient -but current medical practice is short of domain knowledge regarding the complex nature of recipient-donor compatibility. Hence a data-driven approach for learning compatibility has the potential for significant improvements in match quality. This paper proposes a novel system (ConfidentMatch) that is trained using data from electronic health records. ConfidentMatch predicts the success of an organ transplant (in terms of the 3-year survival rates) on the basis of clinical and demographic traits of the donor and recipient. ConfidentMatch captures the heterogeneity of the donor and recipient traits by optimally dividing the feature space into clusters and constructing different optimal predictive models to each cluster. The system controls the complexity of the learned predictive model in a way that allows for assuring more granular and accurate predictions for a larger number of potential recipient-donor pairs, thereby ensuring that predictions are " personalized" and tailored to individual characteristics to the finest possible granularity. Experiments conducted on the UNOS heart transplant dataset show the superiority of the prognostic value of ConfidentMatch to other competing benchmarks; ConfidentMatch can provide predictions of success with 95% accuracy for 5,489 patients of a total population of 9,620 patients, which corresponds to 410 more patients than the most competitive benchmark algorithm (DeepBoost).
引用
下载
收藏
页码:1647 / 1654
页数:8
相关论文
共 50 条
  • [1] Donor-recipient Matching in Heart Transplantation
    Oprzedkiewicz, Aleksandra
    Mado, Hubert
    Szczurek, Wioletta
    Gasior, Mariusz
    Szygula-Jurkiewicz, Bozena
    [J]. OPEN CARDIOVASCULAR MEDICINE JOURNAL, 2020, 14 : 42 - 47
  • [2] Liver transplantation: survival and indexes of donor-recipient matching
    Silveira, Fabio
    Silveira, Fabio Porto
    Teixeira de Freitas, Alexandre Coutinho
    Uili Coelho, Julio Cezar
    Brommelstroet Ramos, Eduardo Jose
    Macri, Matheus Martin
    Tefilli, Nertan
    Bredt, Luis Cesar
    [J]. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA, 2021, 67 (05): : 690 - 695
  • [3] Donor-Recipient Weight Matching in Adult Heart Transplantation
    Bergenfeldt, H.
    Andersson, B.
    Nilsson, J.
    [J]. JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2015, 34 (04): : S275 - S276
  • [4] Effect of Donor-Recipient Age Matching in Living Donor Liver Transplantation
    Han, J. H.
    Kim, D. G.
    Na, G. H.
    Kim, E. Y.
    Lee, S. H.
    Hong, T. H.
    You, Y. K.
    [J]. TRANSPLANTATION PROCEEDINGS, 2015, 47 (03) : 718 - 722
  • [5] Donor-recipient matching in lung transplantation: which variables are important?
    Demir, Adalet
    Coosemans, Willy
    Decaluwe, Herbert
    De Leyn, Paul
    Nafteux, Philippe
    Van Veer, Hans
    Verleden, Geert M.
    Van Raemdonck, Dirk
    [J]. EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2015, 47 (06) : 974 - 983
  • [6] Donor-Recipient Body Mass Index Matching in Lung Transplantation
    Lightle, W. R.
    Hallett, A.
    Motter, J.
    Loor, G.
    Carrott, P.
    Segev, D.
    Massarweh, N. N.
    [J]. JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2021, 40 (04): : S362 - S362
  • [7] The Benefit of Donor-Recipient Matching for Patients Undergoing Heart Transplantation
    Nguyen, Vidang P.
    Mahr, Claudius
    Mokadam, Nahush A.
    Pal, Jay
    Smith, Jason W.
    Dardas, Todd F.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2017, 69 (13) : 1707 - 1714
  • [8] Maximizing outcomes by donor-recipient age matching in liver transplantation
    Kumar, Smriti Rajita
    Goldberg, David S.
    [J]. LIVER TRANSPLANTATION, 2023, 29 (08) : 789 - 790
  • [9] Development of a Donor-Recipient Matching Algorithm for Lung Transplantation in Australia
    Hwang, B.
    Granger, E.
    Jansz, P.
    Malouf, M.
    Watson, A.
    Iyer, A.
    Havryk, A.
    Plit, M.
    Connellan, M.
    [J]. JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2021, 40 (04): : S68 - S68
  • [10] IMPROVEMENT OF IMMUNOLOGICAL DONOR-RECIPIENT MATCHING FOR KIDNEY-TRANSPLANTATION
    ZARETSKAYA, YM
    PODDUBSKY, GA
    RAZORENOV, GI
    DURNEVA, TS
    [J]. VESTNIK AKADEMII MEDITSINSKIKH NAUK SSSR, 1989, (03): : 56 - 61