Scaling limit and ageing for branching random walk in Pareto environment

被引:2
|
作者
Ortgiese, Marcel [1 ]
Roberts, Matthew, I [1 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
Branching random walk; Random environment; Parabolic Anderson model; Intermittency; PARABOLIC ANDERSON MODEL; INTERMITTENCY;
D O I
10.1214/17-AIHP839
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a branching random walk on the lattice, where the branching rates are given by an i.i.d. Pareto random potential. We show that the system of particles, rescaled in an appropriate way, converges in distribution to a scaling limit that is interesting in its own right. We describe the limit object as a growing collection of "lilypads" built on a Poisson point process in R-d. As an application of our main theorem, we show that the maximizer of the system displays the ageing property.
引用
收藏
页码:1291 / 1313
页数:23
相关论文
共 50 条
  • [31] A random walk with collapsing bonds and its scaling limit
    Hosseini, Majid
    Ravishankar, Krishnamurthi
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2008, 26 (01) : 29 - 38
  • [32] ON SENETA-HEYDE SCALING FOR A STABLE BRANCHING RANDOM WALK
    He, Hui
    Liu, Jingning
    Zhang, Mei
    ADVANCES IN APPLIED PROBABILITY, 2018, 50 (02) : 565 - 599
  • [33] Limit Theorems for Local Particle Numbers in Branching Random Walk
    Bulinskaya, E. Vl
    DOKLADY MATHEMATICS, 2012, 85 (03) : 403 - 405
  • [34] Conditional central limit theorem for critical branching random walk
    Hong, Wenming
    Liang, Shengli
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 : 555 - 574
  • [35] Limit theorems for local particle numbers in branching random walk
    E. Vl. Bulinskaya
    Doklady Mathematics, 2012, 85 : 403 - 405
  • [36] Conditional central limit theorem for subcritical branching random walk
    Hong, Wenming
    Yao, Dan
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, 20 (02): : 1411 - 1432
  • [37] Convergence of complex martingale for a branching random walk in a time random environment
    Wang, Xiaoqiang
    Huang, Chunmao
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
  • [38] Scaling limit of critical random trees in random environment
    Conchon-Kerjan, Guillaume
    Kious, Daniel
    Mailler, Cecile
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [39] Tightness for branching random walk in time-inhomogeneous random environment*
    Kriechbaum, Xaver
    ELECTRONIC JOURNAL OF PROBABILITY, 2025, 30
  • [40] Central limit theorem for branching random walks in random environment
    Yoshida, Nobuo
    ANNALS OF APPLIED PROBABILITY, 2008, 18 (04): : 1619 - 1635