Electrochemical oxidation of saline industrial wastewaters using boron-doped diamond anodes

被引:47
|
作者
Anglada, Angela [1 ]
Ibanez, Raquel [1 ]
Urtiaga, Ane [1 ]
Ortiz, Inmaculada [1 ]
机构
[1] Univ Cantabria, Dept Chem Engn, E-39005 Santander, Spain
关键词
Electro-oxidation; Boron-doped diamond; Industrial wastewater; Ammonia removal; WASTE-WATER TREATMENT; LANDFILL LEACHATE; BIODEGRADABILITY; PERFORMANCE; REACTOR;
D O I
10.1016/j.cattod.2010.01.033
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Similarly to other catalytic advanced oxidation processes electro-oxidation by means of boron-doped diamond (BDD) anodes generates a very efficient oxidant media containing, among others, hydroxyl radicals. In this work BDD electro-oxidation is demonstrated to be an efficient alternative to treat a wide variety of saline industrial effluents, which main properties were as follows: TOC = 266-4479 mg/L; [N-NH3] = 61-1150 mg/L; [Cl-]= 1996-37,645 mg/L; conductivity = 5.6-64 mS/cm. Experiments were conducted at laboratory and pilot scale. Treatment efficiency was evaluated in terms of TOC and N-NH3 removal, and of formation of undesired by-products such as nitrate ions and trihalomethanes. The results showed that the high concentration of chloride ions in the wastewaters resulted in chloride oxidation taking place primarily, favouring ammonia oxidation in detriment of TOC elimination. Consequently, complete elimination of ammonia could be achieved for all the wastewaters studied while TOC removals reached values as high as 90%. Additionally, biodegradability of the effluent prior to and after treatment was also evaluated by means of the respirometry technique and the energy consumption of the process was estimated. The analysis of the energy consumption recommends the application of process integration approaches for the treatment of heavily polluted industrial effluents. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:178 / 184
页数:7
相关论文
共 50 条
  • [31] Electrochemical mineralization pathway of quinoline by boron-doped diamond anodes
    Wang, Chunrong
    Ma, Keke
    Wu, Tingting
    Ye, Min
    Tan, Peng
    Yan, Kecheng
    [J]. CHEMOSPHERE, 2016, 149 : 219 - 223
  • [32] Electrochemical Oxidation of Organic Compounds Using Boron-Doped Diamond Electrode
    Chang, Ming
    Gao, Chengyao
    Jiang, Juyuan
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (02) : E50 - E54
  • [33] Electrochemical Oxidation of Trichloroethylene Using Boron-Doped Diamond Film Electrodes
    Carter, Kimberly E.
    Farrell, James
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (21) : 8350 - 8354
  • [34] Electrochemical Oxidation of Organic Compounds using Boron-Doped Diamond Electrodes
    Natishan, P. M.
    O'Grady, W. E.
    Martin, F. J.
    Hagans, P. L.
    Martin, H. B.
    Stoner, B. R.
    [J]. CLEAN WATER TECHNOLOGIES, 2013, 45 (17): : 19 - 30
  • [35] Electrochemical oxidation of aniline at boron-doped diamond electrodes
    M. Mitadera
    N. Spataru
    A. Fujishima
    [J]. Journal of Applied Electrochemistry, 2004, 34 : 249 - 254
  • [36] Electrochemical oxidation of aniline at boron-doped diamond electrodes
    Mitadera, M.
    Spataru, N.
    Fujishima, A.
    [J]. Journal of Applied Electrochemistry, 2004, 34 (03): : 249 - 254
  • [37] Electrochemical oxidation of phenol at boron-doped diamond electrode
    Iniesta, J
    Michaud, PA
    Panizza, M
    Cerisola, G
    Aldaz, A
    Comninellis, C
    [J]. ELECTROCHIMICA ACTA, 2001, 46 (23) : 3573 - 3578
  • [38] Electrochemical oxidation of aniline at boron-doped diamond electrodes
    Mitadera, M
    Spataru, N
    Fujishima, A
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 2004, 34 (03) : 249 - 254
  • [39] Electrochemical oxidation of benzene on boron-doped diamond electrodes
    Oliveira, Robson T. S.
    Salazar-Banda, Giancarlo R.
    Santos, Mauro C.
    Calegaro, Marcelo L.
    Miwa, Douglas W.
    Machado, Sergio A. S.
    Avaca, Luis A.
    [J]. CHEMOSPHERE, 2007, 66 (11) : 2152 - 2158
  • [40] Electrochemical oxidation of phenol on boron-doped diamond electrode
    G. V. Kornienko
    N. V. Chaenko
    N. G. Maksimov
    V. L. Kornienko
    V. P. Varnin
    [J]. Russian Journal of Electrochemistry, 2011, 47