A visit to the Erdos problem

被引:8
|
作者
Humke, PD [1 ]
Laczkovich, M
机构
[1] St Olaf Coll, Dept Math, Northfield, MN 55057 USA
[2] Eotvos Lorand Univ, Dept Anal, H-1088 Budapest, Hungary
关键词
D O I
10.1090/S0002-9939-98-04167-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Erdos asked if for every infinite set, A, of real numbers there exists a measurable subset of the reals having positive measure that does not contain a subset similar to A. In this note we transform this question to a finite combinatorial problem. Using this translation we extend some results of Eigen and Falconer concerning slow sequences for which the answer to Erdos' question is positive.
引用
收藏
页码:819 / 822
页数:4
相关论文
共 50 条
  • [31] ON A PROBLEM OF ERDOS, HERZOG AND PIRANIAN
    WAGNER, G
    ACTA MATHEMATICA HUNGARICA, 1988, 51 (3-4) : 329 - 335
  • [32] On a problem of P. Erdos
    Discrete Appl Math, 1 (75):
  • [33] ON A DENUMERABLE PARTITION PROBLEM OF ERDOS
    DAVIES, RO
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1963, 59 (02): : 501 - &
  • [34] On the Erdos-Szekeres problem
    Koshelev, V. A.
    DOKLADY MATHEMATICS, 2007, 76 (01) : 603 - 605
  • [35] On a problem of Erdos, Herzog and Schonheim
    Chen, Yong-Gao
    Hu, Cui-Ying
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (10-11) : 1501 - 1506
  • [36] NOTE ON A PROBLEM OF ERDOS AND HAJNAL
    DEVLIN, KJ
    DISCRETE MATHEMATICS, 1975, 11 (01) : 9 - 22
  • [37] The counting version of a problem of Erdos
    Pach, Peter Pal
    Palincza, Richard
    EUROPEAN JOURNAL OF COMBINATORICS, 2020, 90
  • [38] On a problem of Erdos, Nathanson and Sarkozy
    Chen, Yong-Gao
    Li, Ya-Li
    JOURNAL OF NUMBER THEORY, 2019, 201 : 135 - 147
  • [39] On a topological Erdos similarity problem
    Gallagher, John
    Lai, Chun-Kit
    Weber, Eric
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (03) : 1104 - 1119
  • [40] On a generalization of a problem of Erdos and Graham
    Tengely, Szabolcs
    Varga, Nora
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 84 (3-4): : 475 - 482