Multivariate density estimation: A comparative study

被引:7
|
作者
Cwik, J [1 ]
Koronacki, J [1 ]
机构
[1] Polish Acad Sci, Inst Comp Sci, PL-01237 Warsaw, Poland
来源
NEURAL COMPUTING & APPLICATIONS | 1997年 / 6卷 / 03期
关键词
Gaussian clustering neural network; non-parametric density estimation; plug-in kernel estimator; projection pursuit; recursive EM algorithm;
D O I
10.1007/BF01413829
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper is a continuation of the authors' earlier work [1], where a version of the Traven's [2] Gaussian clustering neural network (being a recursive counterpart of the EM algorithm) has been investigated. A comparative simulation study of the Gaussian clustering algorithm [1], two versions of plug-in kernel estimators and a version of Friedman's projection pursuit algorithm are presented for two-and three-dimensional data. Simulations show that the projection pursuit algorithm is a good or a very good estimator, provided, however, that the number of projections is suitably chosen. Although practically confined to estimating normal mixtures, the simulations confirm general reliability of plug-in estimators, and show the same property of the Gaussian clustering algorithm. Indeed, the simulations confirm the earlier conjecture that this last estimator proivdes a way of effectively estimating arbitrary and highly structured continuous densities on R-d, at least for small d, either by using this estimator itself or, rather by using it as a pilot estimator for a newly proposed plug-in estimator.
引用
收藏
页码:173 / 185
页数:13
相关论文
共 50 条
  • [1] Multivariate density estimation: A comparative study
    J. Ćwik
    J. Koronacki
    Neural Computing & Applications, 1997, 6 : 173 - 185
  • [2] NONPARAMETRIC MULTIVARIATE DENSITY-ESTIMATION - A COMPARATIVE-STUDY
    HWANG, JN
    LAY, SR
    LIPPMAN, A
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (10) : 2795 - 2810
  • [3] ESTIMATION OF A MULTIVARIATE DENSITY
    CACOULLOS, T
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1966, 18 (02) : 179 - +
  • [4] Multivariate density estimation with optimal marginal Parzen density estimation and Gaussianization
    Erdogmus, D
    Jenssen, R
    Rao, YN
    Principe, JC
    MACHINE LEARNING FOR SIGNAL PROCESSING XIV, 2004, : 73 - 82
  • [5] Multivariate density estimation by probing depth
    Fraiman, R
    Liu, RY
    Meloche, J
    L(1)-STATISTICAL PROCEDURES AND RELATED TOPICS, 1997, 31 : 415 - 430
  • [6] A combined strategy for multivariate density estimation
    Cholaquidis, Alejandro
    Fraiman, Ricardo
    Ghattas, Badih
    Kalemkerian, Juan
    JOURNAL OF NONPARAMETRIC STATISTICS, 2021, 33 (01) : 39 - 59
  • [7] Simple estimation of the mode of a multivariate density
    Abraham, C
    Biau, G
    Cadre, B
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (01): : 23 - 34
  • [8] Adaptive estimation of the mode of a multivariate density
    Klemelä, J
    JOURNAL OF NONPARAMETRIC STATISTICS, 2005, 17 (01) : 83 - 105
  • [9] Multivariate Density Estimation by Neural Networks
    Peerlings, Dewi E. W.
    van den Brakel, Jan A.
    Basturk, Nalan
    Puts, Marco J. H.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 2436 - 2447
  • [10] Multivariate locally adaptive density estimation
    Sain, SR
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (02) : 165 - 186