Performance evaluation of a liquid tin anode solid oxide fuel cell operating under hydrogen, argon and coal

被引:14
|
作者
Khurana, Sanchit [1 ,2 ]
LaBarbera, Mark [1 ,2 ]
Fedkin, Mark V. [1 ]
Lvov, Serguei N. [1 ,2 ,3 ]
Abernathy, Harry [4 ]
Gerdes, Kirk [4 ]
机构
[1] Penn State Univ, Earth & Mineral Sci Energy Inst, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[4] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA
关键词
Solid oxide fuel cell; Liquid Metal Anode; Electrochemical Impedance Spectroscopy; Equivalent circuit modeling; Warburg impedance; Metal-air battery; REFERENCE ELECTRODE PLACEMENT; ELECTROCHEMICAL IMPEDANCE; DIRECT OXIDATION; DIFFUSION; SOFC; POLARIZATION; SPECTROSCOPY; CONVERSION; INTERFACE; OIL;
D O I
10.1016/j.jpowsour.2014.10.138
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A liquid tin anode solid oxide fuel cell is constructed and investigated under different operating conditions. Electrochemical Impedance Spectroscopy (EIS) is used to reflect the effect of fuel feed as the EIS spectra changes significantly on switching the fuel from argon to hydrogen. A cathode symmetric cell is used to separate the impedance from the two electrodes, and the results indicate that a major contribution to the charge-transfer and mass-transfer impedance arises from the anode. The OCP of 0.841 V for the cell operating under argon as a metal-air battery indicates the formation of a SnO2 layer at the electrolyte/anode interface. The increase in the OCP to 1.1 V for the hydrogen fueled cell shows that H-2 reduces the SnO2 film effectively. The effective diffusion coefficients are calculated using the Warburg element in the equivalent circuit model for the experimental EIS data, and the values of 1.9 10(-3) cm(2) s(-1) at 700 degrees C, 2.3 10(-3) cm(2) s(-1) at 800 degrees C and 3.5 10(-3) cm(2) s(-1) at 900 degrees C indicate the system was influenced by diffusion of hydrogen in the system. Further, the performance degradation over time is attributed to the irreversible conversion of Sn to SnO2 resulting from galvanic polarization. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1049 / 1054
页数:6
相关论文
共 50 条
  • [31] Solid Oxide Fuel Cell Anode Materials
    Brodnikovskii, E. M.
    POWDER METALLURGY AND METAL CERAMICS, 2015, 54 (3-4) : 166 - 174
  • [32] Performance of an anode-supported tubular solid oxide fuel cell (SOFC) under pressurized conditions
    Zhou, Li
    Cheng, Mojie
    Yi, Baolian
    Dong, Yonglai
    Cong, You
    Yang, Weishen
    ELECTROCHIMICA ACTA, 2008, 53 (16) : 5195 - 5198
  • [33] Operating Characteristics of a Tubular Direct Carbon Fuel Cell Based on a General Anode Support Solid Oxide Fuel Cell
    Yun, Ui-Jin
    Jo, Min-Je
    Lee, Jong-Won
    Lee, Seung-Bok
    Lim, Tak-Hyoung
    Park, Seok-Joo
    Song, Rak-Hyun
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (44) : 15466 - 15471
  • [34] Performance characteristics of a solid oxide fuel cell hybrid jet engine under different operating modes
    Ji, Zhixing
    Qin, Jiang
    Cheng, Kunlin
    Guo, Fafu
    Zhang, Silong
    Dong, Peng
    AEROSPACE SCIENCE AND TECHNOLOGY, 2020, 105
  • [35] Performance and Byproduct Analysis of Coal Gas Solid Oxide Fuel Cell
    Singh, Rahul
    Guzman, Felipe
    Khatri, Rajesh
    Chuang, Steven S. C.
    ENERGY & FUELS, 2010, 24 (02) : 1176 - 1183
  • [36] Experimental evaluation of the operating temperature impact on solid oxide anode-supported fuel cells
    Leone, P.
    Lanzini, A.
    Squillari, P.
    Asinari, P.
    Santarelli, M.
    Borchiellini, R.
    Cali, M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (12) : 3167 - 3172
  • [37] Performance of Tubular Direct Carbon Fuel Cell Based on an Anode Support Solid Oxide Fuel Cell
    Lim, Tak-Hyoung
    Lee, Jong-Won
    Lee, Seung-Bok
    Park, Seok-Joo
    Song, Rak-Hyun
    SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 529 - 532
  • [38] Direct methanol utilization in intermediate temperature liquid-tin anode solid oxide fuel cells
    Hu, Boxun
    Keane, Michael
    Patil, Kailash
    Mahapatra, Manoj K.
    Pasaogullari, Ugur
    Singh, Prabhakar
    APPLIED ENERGY, 2014, 134 : 342 - 348
  • [39] A simplified approach to predict performance degradation of a solid oxide fuel cell anode
    Khan, Muhammad Zubair
    Mehran, Muhammad Taqi
    Song, Rak-Hyun
    Lee, Jong-Won
    Lee, Seung-Bok
    Lim, Tak-Hyoung
    JOURNAL OF POWER SOURCES, 2018, 391 : 94 - 105
  • [40] A parametric analysis of the long term performance of a solid oxide fuel cell anode
    Prokop, Tomasz A.
    Buchaniec, Szymon
    Szmyd, Janusz
    Brus, Grzegorz
    International Journal of Heat and Fluid Flow, 2024, 110