On-wafer time-dependent high reproducibility nano-force tensile testing

被引:20
|
作者
Bergers, L. I. J. C. [1 ,2 ,3 ]
Hoefnagels, J. P. M. [1 ]
Geers, M. G. D. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
[2] Fdn Fundamental Res Matter, NL-3502 GA Utrecht, Netherlands
[3] Mat Innovat Inst M2i, NL-2600 GA Delft, Netherlands
关键词
nano-force micro-tensile testing; anelasticity; creep; thin films; global digital image correlation; in situ micromechanical characterization; DIGITAL IMAGE CORRELATION; SITU UNIAXIAL TESTS; THIN-FILMS; MECHANICAL CHARACTERIZATION; DISPLACEMENT MEASUREMENT; NANOSCALE TENSILE; STRESS-RELAXATION; ALUMINUM FILMS; MEMS MATERIALS; FATIGUE;
D O I
10.1088/0022-3727/47/49/495306
中图分类号
O59 [应用物理学];
学科分类号
摘要
Time-dependent mechanical investigations of on-wafer specimens are of interest for improving the reliability of thin metal film microdevices. This paper presents a novel methodology, addressing key challenges in creep and anelasticity investigations through on-wafer tensile tests, achieving highly reproducible force and specimen deformation measurements and loading states. The methodology consists of a novel approach for precise loading using a pinin- hole gripper and a high-precision specimen alignment system based on three-dimensional image tracking and optical profilometry resulting in angular alignment of < 0.1 mrad and near-perfect co-linearity. A compact test system enables in situ tensile tests of on-wafer specimens under light and electron microscopy. Precision force measurement over a range of 0.07 mu N to 250 mN is realized based on a simple drift-compensated elastically-hinged load cell with high-precision deflection measurement. The specimen deformation measurement, compensated for drift through image tracking, yields displacement reproducibility of < 6 nm. Proof of principle tensile experiments are performed on 5 mu m-thick aluminum-alloy thin film specimens, demonstrating reproducible Young's modulus measurement of 72.6 +/- 3.7 GPa. Room temperature creep experiments show excellent stability of the force measurement and underline the methodology's high reproducibility and suitability for time-dependent nanoforce tensile testing of on-wafer specimens.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] MMIC in-circuit and in-device testing with an on-wafer high frequency electric force microscope test system
    Leyk, A.
    Van Waasen, S.
    Tegude, F.J.
    Kubalek, E.
    Microelectronics Reliability, 1997, 37 (10-11): : 1575 - 1578
  • [2] TIME-DEPENDENT TENSILE STRENGTH OF SOLIDS
    HSIAO, CC
    NATURE, 1960, 186 (4724) : 535 - 537
  • [3] TIME-DEPENDENT TENSILE STRENGTH OF SOLIDS
    HALL, IH
    NATURE, 1961, 189 (475) : 131 - &
  • [4] MMIC in-circuit and in-device testing with an on-wafer high frequency electric force microscope test system
    Leyk, A
    VanWaasen, S
    Tegude, FJ
    Kubalek, E
    MICROELECTRONICS AND RELIABILITY, 1997, 37 (10-11): : 1575 - 1578
  • [5] THE TIME-DEPENDENT PONDEROMOTIVE FORCE
    KENTWELL, GW
    JONES, DA
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 145 (06): : 319 - 403
  • [6] An application of membrane probes for on-wafer testing of unmatched high power MMICS
    Tonks, D
    Vaillancourt, W
    Smith, K
    Strid, E
    1996 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 1996, : 1289 - 1292
  • [7] Time-dependent electroadhesive force degradation
    Chen, Rui
    Zhang, Zhuo
    Song, Ruizhou
    Fang, Cheng
    Sindersberger, Dirk
    Monkman, Gareth J.
    Guo, Jianglong
    SMART MATERIALS AND STRUCTURES, 2020, 29 (05)
  • [8] Subdiffusion in a time-dependent force field
    Shkilev, V. P.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2012, 114 (05) : 830 - 835
  • [9] Subdiffusion in a time-dependent force field
    V. P. Shkilev
    Journal of Experimental and Theoretical Physics, 2012, 114 : 830 - 835
  • [10] A microelectromechanical force actuator for nano-tensile testing system
    Gao, S.
    Hermann, K.
    MEMS, MOEMS, AND MICROMACHING III, 2008, 6993