Recognition and Positioning of Container Lock Holes for Intelligent Handling Terminal Based on Convolutional Neural Network

被引:3
|
作者
Wang, Xue [1 ]
机构
[1] Shenzhen Polytech, Logist Management Dept, Shenzhen 518055, Peoples R China
关键词
convolutional neural network (CNN); feature extraction; target detection; sliding window; automated terminal;
D O I
10.18280/ts.380226
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Container handling is a key link in container transport. In an automated handling terminal, the work efficiency directly depends on the time cost of the alignment between the spreader and the lock holes of the container. This paper attempts to improve the recognition and location of container lock holes with the aid of machine vision. Firstly, a lock hole recognition algorithm was designed based on local binary pattern (LBP) feature and classifier. After feature extraction and classifier training, multi-scale sliding window was used to recognize each lock hole. To realize real-time, accurate recognition of lock holes, the convolutional neural network (CNN) with improved threshold was incorporated to our algorithm. The tests on actual datasets show that our algorithm can effectively locate container lock holes.
引用
收藏
页码:467 / 472
页数:6
相关论文
共 50 条
  • [21] Contactless Palmprint Recognition Based On Convolutional Neural Network
    Liu, Dian
    Sun, Dongmei
    PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 1363 - 1367
  • [22] Finger vein recognition based on convolutional neural network
    Meng, Gesi
    Fang, Peiyu
    Zhang, Bao
    2017 INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING (EITCE 2017), 2017, 128
  • [23] Continuous Speech Recognition based on Convolutional Neural Network
    Zhang, Qing-qing
    Liu, Yong
    Pan, Jie-lin
    Yan, Yong-hong
    SEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2015), 2015, 9631
  • [24] Vehicle Make Recognition based on Convolutional Neural Network
    Gao, Yongbin
    Lee, Hyo Jong
    2015 2ND INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND SECURITY (ICISS), 2015, : 223 - 226
  • [25] Log facies recognition based on convolutional neural network
    He X.
    Li Z.
    Liu X.
    Zhang T.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2019, 54 (05): : 1159 - 1165
  • [26] Facial Expression Recognition Based on Convolutional Neural Network
    Zhou Yue
    Feng Yanyan
    Zeng Shangyou
    Pan Bing
    PROCEEDINGS OF 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2019), 2019, : 410 - 413
  • [27] A Fault Recognition Method Based on Convolutional Neural Network
    Chen, Lei
    Shi, Jiaqi
    Zhang, Ting
    International Journal of Network Security, 2024, 26 (04) : 589 - 597
  • [28] Radar Based Object Recognition with Convolutional Neural Network
    Loi, Kin Chong
    Cheong, Pedro
    Choi, Wai Wa
    PROCEEDINGS OF THE 2019 IEEE ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), 2019, : 87 - 89
  • [29] A Convolutional Neural Network based on TensorFlow for Face Recognition
    Yuan, Liping
    Qu, Zhiyi
    Zhao, Yufeng
    Zhang, Hongshuai
    Nian, Qing
    2017 IEEE 2ND ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2017, : 525 - 529
  • [30] Handwritten Digit Recognition Based on Convolutional Neural Network
    Zhang, Chao
    Zhou, Zhiyao
    Lin, Lan
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 7384 - 7388