Antagonist properties of a phosphono isoxazole amino acid at glutamate R1-4 (R,S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid receptor subtypes

被引:25
|
作者
Wahl, P
Anker, C
Traynelis, SF
Egebjerg, J
Rasmussen, JS
Krogsgaard-Larsen, P
Madsen, U
机构
[1] Novo Nordisk AS, Dept Mol Pharmacol, DK-2760 Maaloev, Denmark
[2] Emory Univ, Dept Pharmacol, Atlanta, GA 30322 USA
[3] Novo Nordisk AS, Dept Mol Genet, DK-2880 Bagsvaerd, Denmark
[4] Royal Danish Sch Pharm, Dept Med Chem, DK-2100 Copenhagen, Denmark
关键词
D O I
10.1124/mol.53.3.590
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The activity of the (R,S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor antagonist, (R,S)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid (ATPO), at recombinant ionotropic glutamate receptors (GluRs) was evaluated using electrophysiological techniques, Responses at home-or heterooligomeric AMPA-preferring GluRs expressed in human embryonic kidney (HEK) 293 cells (GluR1-flip) or Xenopus laevis oocytes (GluR1-4-flop or GluR1-flop + GluR2) were potently inhibited by ATPO with apparent dissociation constants (K-b values) ranging from 3.9 to 26 mu M. A Schild analysis for kainate (KA)-activated GluR1 receptors showed ATPO to have a K-B of 8.2 mu M and a slope of unity, indicating competitive inhibition. The antagonism by ATPO at GluR1 was of similar magnitude at holding potentials between -100 mV and +20 mV. In contrast, ATPO (<300 mu M), does not inhibit responses to kainate at homomeric GluR6 or heterooligomeric GluR6/KA2 expressed in HEK 293 cells but activated GluR5 and GluR5/KA2 expressed in X. laevis oocytes. ATPO produced <15% inhibition at the maximal concentration (300 mu M) of current responses through NR1A + NR2B receptors expressed in X. laevis oocytes. Thus, ATPO shows a unique pharmacological profile, being an antagonist at GluR1-4 and a weak partial agonist at GIuR5 and GluR5/KA2.
引用
收藏
页码:590 / 596
页数:7
相关论文
共 50 条
  • [21] Excitatory amino-acid receptor agonists. Synthesis and pharmacology of analogues of 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid
    Slok, FA
    Ebert, B
    Lang, Y
    KrogsgaardLarsen, P
    Lenz, SM
    Madsen, U
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 1997, 32 (04) : 329 - 338
  • [22] Rapid effects of kainate administration on α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor properties in rat hippocampus
    Standley, S
    Baudry, M
    EXPERIMENTAL NEUROLOGY, 1998, 152 (02) : 208 - 213
  • [23] Oligomerization and ligand-binding properties of the ectodomain of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit GluRD
    Kuusinen, A
    Abele, R
    Madden, DR
    Keinänen, K
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (41) : 28937 - 28943
  • [24] Structural determinants of AMPA agonist activity in analogues of 2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid: Synthesis and pharmacology
    Bang-Andersen, B
    Ahmadian, H
    Lenz, SM
    Stensbol, TB
    Madsen, U
    Bogeso, KP
    Krogsgaard-Larsen, P
    JOURNAL OF MEDICINAL CHEMISTRY, 2000, 43 (25) : 4910 - 4918
  • [25] N-methyl-D-aspartic acid receptor agonists: Resolution, absolute stereochemistry, and pharmacology of the enantiomers of 2-amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid
    Madsen, U
    Frydenvang, K
    Ebert, B
    Johansen, TN
    Brehm, L
    KrogsgaardLarsen, P
    JOURNAL OF MEDICINAL CHEMISTRY, 1996, 39 (01) : 183 - 190
  • [26] α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor density underlies intraregional and interregional functional centrality
    Yatomi, Taisuke
    Tomasi, Dardo
    Tani, Hideaki
    Nakajima, Shinichiro
    Tsugawa, Sakiko
    Nagai, Nobuhiro
    Koizumi, Teruki
    Nakajima, Waki
    Hatano, Mai
    Uchida, Hiroyuki
    Takahashi, Takuya
    FRONTIERS IN NEURAL CIRCUITS, 2024, 18
  • [27] Identifications, classification, and evolution of the vertebrate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunit genes
    Chen, YC
    Kung, SS
    Chen, BY
    Hung, CC
    Chen, CC
    Wang, TY
    Wu, YM
    Lin, WH
    Tzeng, CS
    Chow, WY
    JOURNAL OF MOLECULAR EVOLUTION, 2001, 53 (06) : 690 - 702
  • [28] Regions of α-amino-5-methyl-3-hydroxy-4-isoxazole propionic acid receptor subunits that are permissive for the insertion of green fluorescent protein
    Sheridan, D. L.
    Robert, A.
    Cho, C. H.
    Howe, J. R.
    Hughes, T. E.
    NEUROSCIENCE, 2006, 141 (02) : 837 - 849
  • [29] Identifications, Classification, and Evolution of the Vertebrate α-Amino-3-Hydroxy-5-Methyl-4-Isoxazole Propionic Acid (AMPA) Receptor Subunit Genes
    Yu-Chia Chen
    Shieh-Shiuh Kung
    Bo-Yuan Chen
    Chi-Chang Hung
    Chun-Chen Chen
    Tzi-Yuan Wang
    Yi-Mi Wu
    Wei-Hsiang Lin
    Chyng-Shyan Tzeng
    Wei-Yuan Chow
    Journal of Molecular Evolution, 2001, 53 : 690 - 702
  • [30] THE EXCITATION OF FROG MOTONEURONES INVITRO BY THE GLUTAMATE ANALOG, DL-ALPHA-AMINO-3-HYDROXY-5-METHYL-4-ISOXAZOLE-PROPIONIC ACID (AMPA), AND THE EFFECT OF AMINO-ACID ANTAGONISTS
    KING, AE
    NISTRI, A
    ROVIRA, C
    NEUROSCIENCE LETTERS, 1985, 55 (01) : 77 - 82