Adaptive hp-Refinement for 2-D Maxwell Eigenvalue Problems: Method and Benchmarks

被引:2
|
作者
Harmon, Jake J. [1 ]
Notaros, Branislav M. [1 ]
机构
[1] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
关键词
Eigenvalues and eigenfunctions; Finite element analysis; Convergence; Error analysis; Benchmark testing; Estimation; Standards; Adaptive error control; adaptive refinement; adjoint methods; computational electromagnetics (CEM); finite element method (FEM); higher order methods; hp-refinement; FINITE-ELEMENT-METHOD; WAVE-GUIDE DISCONTINUITIES; P-VERSION; DISCRETE COMPACTNESS; 1-DIMENSION; ELECTROMAGNETICS; CONVERGENCE; STRATEGY;
D O I
10.1109/TAP.2022.3145473
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an application of goal-oriented adaptive isotropic hp-refinement for the 2-D Maxwell eigenvalue problem. We apply a simplified goal-oriented error expression for improving the accuracy of the eigenvalues, which, when combined with indicators derived from the solution, enables highly targeted discretization tuning. Furthermore, we introduce an hp-refinement/coarsening optimizer coupled with smoothness estimation for refinement classification and execution. These enhancements yield cost-effective resource allocations that reach extremely high accuracy rapidly even for eigenvalues of singular eigenfunctions. Finally, we provide numerical benchmarks more accurate than existing numerical reference values, along with new benchmarks for higher order modes that will facilitate the comparison and development of new approaches to adaptivity and hp finite elements in computational electromagnetics (CEM). Our implementation is based on the open-source finite element library deal.II.
引用
收藏
页码:4663 / 4673
页数:11
相关论文
共 50 条