Ammonium nutrition increases water absorption in rice seedlings (Oryza sativa L.) under water stress

被引:81
|
作者
Gao, Yingxu [1 ]
Li, Yong [1 ]
Yang, Xiuxia [1 ]
Li, Haijun [1 ]
Shen, Qirong [1 ]
Guo, Shiwei [1 ]
机构
[1] Nanjing Agr Univ, Coll Resources & Environm Sci, Nanjing 210095, Peoples R China
基金
中国国家自然科学基金;
关键词
Rice (Oryza sativa L.); Water stress; Nitrogen form; Aquaporin; Hydraulic conductivity; HYDRAULIC CONDUCTIVITY; NITROGEN FORM; USE EFFICIENCY; ROOT PRESSURE; GROWTH; PLANT; NITRATE; PHOTOSYNTHESIS; AQUAPORINS; CONDUCTANCE;
D O I
10.1007/s11104-009-0245-1
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Water stress is a primary limitation on plant growth. In previous studies, it has been found that ammonium enhances the tolerance of rice plants to water stress, but how water is related to nitrogen form and water stress remains unknown. To study the effects of nitrogen form (NH (4) (+) , NO (3) (-) , and a mixture of NH (4) (+) and NO (3) (-) ) on the growth and water absorption of rice (Oryza sativa L.) seedlings, a hydroponic experiment with water stress, simulated by the addition of polyethylene glycol (PEG, 10% w/v, MW 6000), was conducted in a greenhouse. The results showed that, compared with non-water stress, under water stress, the fresh weight of rice seedlings increased by 14% with NH (4) (+) nutrition, whereas it had decreased by about 20% with either NO (3) (-) or mixed nitrogen nutrition. No significant difference was found in the transpiration rate of excised shoots or in xylem exudation of excised roots in NH (4) (+) supply between the two water situations, whereas xylem flow decreased by 57% and 24% under water stress in NO (3) (-) and mixed nutrition, and root hydraulic conductivity decreased by 29% and 54% in plants in NH (4) (+) and NO (3) (-) nutrition conditions, respectively. Although water absorption ability decreased in both NH (4) (+) and NO (3) (-) nutrition, aquaporin activity was higher in NH (4) (+) than in NO (3) (-) nutrition, regardless of water stress. We conclude that NH (4) (+) nutrition can improve water handling in rice seedlings and subsequently enhance their resistance to drought.
引用
收藏
页码:193 / 201
页数:9
相关论文
共 50 条
  • [31] Optimization of paclobutrazol dose for mitigation of water-deficit stress in rice (Oryza Sativa L.)
    Maheshwari, Chirag
    Garg, Nitin Kumar
    Singh, Archana
    Tyagi, Aruna
    BIOCHEMICAL SYSTEMATICS AND ECOLOGY, 2023, 107
  • [32] Effects of Perchlorate Stress on Growth and Physiological Characteristics of Rice (Oryza sativa L.) Seedlings
    Yinfeng Xie
    Gongsheng Tao
    Qian Chen
    Xueyao Tian
    Water, Air, & Soil Pollution, 2014, 225
  • [33] Physiological and morphological responses of rice (Oryza sativa L.) to varying water stress management strategies
    Davatgar, N.
    Neishabouri, M. R.
    Sepaskhah, A. R.
    Soltani, A.
    INTERNATIONAL JOURNAL OF PLANT PRODUCTION, 2009, 3 (04) : 19 - 32
  • [34] Potentialities of vermicompost humic acids to alleviate water stress in rice plants (Oryza sativa L.)
    Calderin Garcia, Andres
    Santos, Leandro Azevedo
    Guridi Izquierdo, Fernando
    Rumjanek, Victor Marcos
    Castro, Rosane Nora
    dos Santos, Fabiana Soares
    Ambrosio de Souza, Luiz Gilberto
    Louro Berbara, Ricardo Luis
    JOURNAL OF GEOCHEMICAL EXPLORATION, 2014, 136 : 48 - 54
  • [35] Foliar spray of silica improved water stress tolerance in rice (Oryza sativa L.) cultivars
    El-Okkiah, Samira A. F.
    El-Afry, Mohamed M. M.
    Shehab Eldeen, Safaa A. A.
    El-Tahan, Amira M. M.
    Ibrahim, Omar M. M.
    Negm, Mostafa M. M.
    Alnafissa, Mohamad
    El-Saadony, Mohamed T. T.
    Almazrouei, Hessa M. R. S.
    AbuQamar, Synan F. F.
    El-Tarabily, Khaled A. A.
    Selim, Dalia A. A.
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [36] WATER DEFICIT STRESS IN THE REPRODUCTIVE STAGE OF FOUR INDICA RICE (ORYZA SATIVA L.) GENOTYPES
    Cha-Um, Suriyan
    Yooyongwech, Suravoot
    Supaibulwatana, Kanyaratt
    PAKISTAN JOURNAL OF BOTANY, 2010, 42 (05) : 3387 - 3398
  • [37] Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit
    Cabuslay, GS
    Ito, O
    Alejar, AA
    PLANT SCIENCE, 2002, 163 (04) : 815 - 827
  • [38] Microalgae Improve the Photosynthetic Performance of Rice Seedlings (Oryza sativa L.) under Physiological Conditions and Cadmium Stress
    Yotsova, Ekaterina
    Stefanov, Martin
    Rashkov, Georgi
    Kouzmanova, Margarita
    Dobrikova, Anelia
    Apostolova, Emilia
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2022, 91 (07) : 1365 - 1380
  • [39] Nitrogen-mediated alleviation of photosynthetic inhibition under moderate water deficit stress in rice (Oryza sativa L.)
    Zhong, Chu
    Bai, Zhi-Gang
    Zhu, Lian-Feng
    Zhang, Jun-Hua
    Zhu, Chun-Quan
    Huang, Jian-Liang
    Jin, Qian-Yu
    Cao, Xiao-Chuang
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2019, 157 : 269 - 282
  • [40] Classification of rice (oryza sativa l. japonica nipponbare) immunophilins (fkbps, cyps) and expression patterns under water stress
    Ahn, Jun Cheul
    Kim, Dae-Won
    You, Young Nim
    Seok, Min Sook
    Park, Jeong Mee
    Hwang, Hyunsik
    Kim, Beom-Gi
    Luan, Sheng
    Park, Hong-Seog
    Cho, Hye Sun
    BMC PLANT BIOLOGY, 2010, 10 : 253