Estimation of partial least squares regression prediction uncertainty when the reference values carry a sizeable measurement error

被引:0
|
作者
Pierna, JAF
Jin, L
Wahl, F
Faber, NM
Massart, DL
机构
[1] Free Univ Brussels, ChemoAC, Inst Pharmaceut, B-1090 Brussels, Belgium
[2] Nanchang Univ, Inst Appl Chem, Nanchang 330047, Peoples R China
[3] Inst Francais Petr, F-69390 Vernaison, France
[4] DLO, ATO, Dept Prod & Control Syst, NL-6700 AA Wageningen, Netherlands
关键词
multivariate calibration; partial least squares regression; uncertainty estimation; standard error of prediction; Monte Carlo simulation; bootstrap; noise addition; near-infrared spectroscopy;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The prediction uncertainty is studied when using a multivariate partial least squares regression (PLSR) model constructed with reference values that contain a sizeable measurement error. Several approximate expressions for calculating a sample-specific standard error of prediction have been proposed in the literature. In addition, Monte Carlo simulation methods such as the bootstrap and the noise addition method can give an estimate of this uncertainty. In this paper, two approximate expressions are compared with the simulation methods for three near-infrared data sets. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:281 / 291
页数:11
相关论文
共 50 条
  • [1] A linearization method for partial least squares regression prediction uncertainty
    Zhang, Ying
    Fearn, Tom
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 140 : 133 - 140
  • [2] Review of partial least squares regression prediction error in Unscrambler
    Hoy, M
    Steen, K
    Martens, H
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1998, 44 (1-2) : 123 - 133
  • [3] On estimation of multivariate prediction regions in partial least squares regression
    Lin, Weilu
    Zhuang, Yingping
    Zhang, Siliang
    Martin, Elaine
    [J]. JOURNAL OF CHEMOMETRICS, 2013, 27 (09) : 243 - 250
  • [4] Missing values estimation in microarray data with partial least squares regression
    Yang, Kun
    Li, Jianzhong
    Wang, Chaokun
    [J]. COMPUTATIONAL SCIENCE - ICCS 2006, PT 2, PROCEEDINGS, 2006, 3992 : 662 - 669
  • [5] Prediction error in partial least squares regression: A critique on the deviation used in The Unscrambler
    DeVries, S
    TerBraak, CJF
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1995, 30 (02) : 239 - 245
  • [6] Sample-specific standard error of prediction for partial least squares regression
    Faber, NM
    Song, XH
    Hopke, PK
    [J]. TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2003, 22 (05) : 330 - 334
  • [7] Comparison of two recently proposed expressions for partial least squares regression prediction error
    Faber, NM
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 52 (02) : 123 - 134
  • [8] Model validation and error estimation in multi-block partial least squares regression
    Hassani, Sahar
    Martens, Harald
    Qannari, El Mostafa
    Hanafi, Mohamed
    Kohler, Achim
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2012, 117 : 42 - 53
  • [9] Monitoring Process Water Quality Using Near Infrared Spectroscopy and Partial Least Squares Regression with Prediction Uncertainty Estimation
    Skou, Peter B.
    Berg, Thilo A.
    Aunsbjerg, Stina D.
    Thaysen, Dorrit
    Rasmussen, Morten A.
    van den Berg, Frans
    [J]. APPLIED SPECTROSCOPY, 2017, 71 (03) : 410 - 421
  • [10] Comparison of Orthogonal Regression and Least Squares in Measurement Error Modeling for Prediction of Material Property
    Ding, Guoliang
    Chu, Biao
    Jin, Yi
    Zhu, Chang'an
    [J]. NANOTECHNOLOGY AND MATERIAL ENGINEERING RESEARCH, 2013, 661 : 166 - 170