Dziobek Equilibrium Configurations on a Sphere

被引:0
|
作者
Zhu, Shuqiang [1 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Econ Math, Chengdu 611130, Peoples R China
基金
中国国家自然科学基金;
关键词
Curved n-body problem; Dziobek configurations; Equilibrium configurations; Stability; Cayley-Menger determinant; RELATIVE EQUILIBRIA;
D O I
10.1007/s10884-021-10001-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the n-body problem on a sphere with a general interaction potential that depends on the mutual distances. We focus on the equilibrium configurations, especially on the Dziobek equilibrium configurations, which is an analogy of Dziobek central configurations of the classical n-body problem. We obtain a criterion and then reduce it to two sets of equations. Then we apply these equations to the curved n-body problem in S-3. In the end, we find the derivative of the Cayley-Menger determinant.
引用
收藏
页码:1269 / 1283
页数:15
相关论文
共 50 条
  • [41] SPATIAL CONFIGURATIONS AND COMPETITIVE EQUILIBRIUM
    GREENHUT, ML
    OHTA, H
    WELTWIRTSCHAFTLICHES ARCHIV-REVIEW OF WORLD ECONOMICS, 1973, 109 (01): : 87 - 104
  • [42] PREBREAKDOWN PHENOMENA IN SPHERE-SPHERE ELECTRODE CONFIGURATIONS IN DIELECTRIC LIQUIDS
    DEVINS, JC
    RZAD, SJ
    SCHWABE, RJ
    APPLIED PHYSICS LETTERS, 1977, 31 (05) : 313 - 314
  • [43] EQUILIBRIUM OF A CHARGED ELASTIC SPHERE
    NDUKA, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1975, 8 (12): : 1882 - 1884
  • [45] ANALYSIS OF RADIATIVE SCATTERING FOR MULTIPLE SPHERE CONFIGURATIONS
    MACKOWSKI, DW
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 433 (1889): : 599 - 614
  • [46] STABILITY OF THOMSON'S CONFIGURATIONS OF VORTICES ON A SPHERE
    Borisov, A. V.
    Kilin, A. A.
    REGULAR & CHAOTIC DYNAMICS, 2000, 5 (02): : 189 - 200
  • [47] QMC Strength for Some Random Configurations on the Sphere
    de la Torre, Victor
    Marzo, Jordi
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2022, 2024, 460 : 625 - 642
  • [48] Casimir forces in multi-sphere configurations
    Babington, James
    Scheel, Stefan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (21)
  • [49] Section problems for configurations of points on the Riemann sphere
    Chen, Lei
    Salter, Nick
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2020, 20 (06): : 3047 - 3082
  • [50] ON EQUILIBRIUM CONFIGURATIONS OF COMPRESSIBLE SLENDER BARS
    GREENBERG, JM
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1967, 27 (03) : 181 - +