Multi-Source Domain Adaptation with Weak Supervision for Early Fake News Detection

被引:13
|
作者
Li, Yichuan [1 ]
Lee, Kyumin [1 ]
Kordzadeh, Nima [1 ]
Faber, Brenton [1 ]
Fiddes, Cameron [1 ]
Chen, Elaine [2 ]
Shu, Kai [1 ]
机构
[1] Worcester Polytech Inst, Worcester, MA 01609 USA
[2] IIT, Chicago, IL 60616 USA
关键词
fake news detection; weak supervision; domain adaptation;
D O I
10.1109/BigData52589.2021.9671592
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, the massive and diverse fake news from politics to entertainment and health has amplified the social distrust problem and has become a big challenge for the society and research community. The existing fake news detection methods are mostly designed for either a specific domain or require huge labeled data from various domains. If there is not enough labeled data in a certain domain, existing models may not work well for detecting fake news from that domain. To overcome these limitations we propose a novel framework based on multi-source domain adaptation and weak supervision for early fake news detection. The framework transfers sufficient labeled source domains' knowledge into a target/new domain with limited or even no labeled data by the multi-source domain adaptation, and applies researchers' prior knowledge about fake news to the target domain by the weak supervision. The weak supervision assigns the weak labels to the unlabeled samples in the target domain through known heuristic rules. Our experimental results show that our approach outperforms 7 state-of-the-art methods in three real-world datasets. In particular, our model achieves, on average, 5.2% higher accuracy than the best baseline. Our model with a more advanced encoder can further boost the performance by 3.7%. The code is available at this clickable link.
引用
收藏
页码:668 / 676
页数:9
相关论文
共 50 条
  • [21] Unsupervised Multi-source Domain Adaptation for Regression
    Richard, Guillaume
    de Mathelin, Antoine
    Hebrail, Georges
    Mougeot, Mathilde
    Vayatis, Nicolas
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT I, 2021, 12457 : 395 - 411
  • [22] On the analysis of adaptability in multi-source domain adaptation
    Redko, Ievgen
    Habrard, Amaury
    Sebban, Marc
    MACHINE LEARNING, 2019, 108 (8-9) : 1635 - 1652
  • [23] Multi-source Domain Adaptation for Semantic Segmentation
    Zhao, Sicheng
    Li, Bo
    Yue, Xiangyu
    Gu, Yang
    Xu, Pengfei
    Hu, Runbo
    Chai, Hua
    Keutzer, Kurt
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [24] Multi-Source Contribution Learning for Domain Adaptation
    Li, Keqiuyin
    Lu, Jie
    Zuo, Hua
    Zhang, Guangquan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (10) : 5293 - 5307
  • [25] Multi-Source Domain Adaptation: A Causal View
    Zhang, Kun
    Gong, Mingming
    Schoelkopf, Bernhard
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3150 - 3157
  • [26] Learning to Detect Salient Object With Multi-Source Weak Supervision
    Zhang, Hongshuang
    Zeng, Yu
    Lu, Huchuan
    Zhang, Lihe
    Li, Jianhua
    Qi, Jinqing
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3577 - 3589
  • [27] Coupled Training for Multi-Source Domain Adaptation
    Amosy, Ohad
    Chechik, Gal
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1071 - 1080
  • [28] Dynamic Transfer for Multi-Source Domain Adaptation
    Li, Yunsheng
    Yuan, Lu
    Chen, Yinpeng
    Wang, Pei
    Vasconcelos, Nuno
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 10993 - 11002
  • [29] On the analysis of adaptability in multi-source domain adaptation
    Ievgen Redko
    Amaury Habrard
    Marc Sebban
    Machine Learning, 2019, 108 : 1635 - 1652
  • [30] Multi-Source Domain Adaptation with Sinkhorn Barycenter
    Komatsu, Tatsuya
    Matsui, Tomoko
    Gao, Junbin
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1371 - 1375