Coupled Sparse Denoising and Unmixing With Low-Rank Constraint for Hyperspectral Image

被引:80
|
作者
Yang, Jingxiang [1 ]
Zhao, Yong-Qiang [1 ]
Chan, Jonathan Cheung-Wai [2 ]
Kong, Seong G. [3 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Key Lab Informat Fus Technol, Minist Educ China, Xian 710072, Peoples R China
[2] Vrije Univ Brussel, Dept Elect & Informat, B-1050 Brussels, Belgium
[3] Sejong Univ, Dept Comp Engn, Seoul 05006, South Korea
来源
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Coupling; denoising; hyperspectral image (HSI); sparsity; unmixing; JOINT-SPARSE; REPRESENTATION; RESTORATION; ALGORITHM; OPTIMIZATION; FUSION;
D O I
10.1109/TGRS.2015.2489218
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) denoising is significant for correct interpretation. In this paper, a sparse representation framework that unifies denoising and spectral unmixing in a closed-loop manner is proposed. While conventional approaches treat denoising and unmixing separately, the proposed scheme utilizes spectral information from unmixing as feedback to correct spectral distortion. Both denoising and spectral unmixing act as constraints to the others and are solved iteratively. Noise is suppressed via sparse coding, and fractional abundance in spectral unmixing is estimated using the sparsity prior of endmembers from a spectral library. The abundance of endmembers is used as a spectral regularizer for denoising based on the hypothesis that spectral signatures obtained from a denoising process result are close to those of unmixing. Unmixing restrains spectral distortion and results in better denoising, which reciprocally leads to further improvements in unmixing. The strength of our proposed method is illustrated by simulated and real HSIs with performance competitive to the state-of-the-art denoising and unmixing methods.
引用
下载
收藏
页码:1818 / 1833
页数:16
相关论文
共 50 条
  • [41] Hyperspectral image compressive reconstruction with low-rank tensor constraint
    Li, Yangyang
    Zhang, Jianping
    Sun, Guiling
    Wang, Shijie
    JOURNAL OF ELECTRONIC IMAGING, 2020, 29 (02)
  • [42] Denoising by low-rank and sparse representations
    Nejati, Mansour
    Samavi, Shadrokh
    Derksen, Harm
    Najarian, Kayvan
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 36 : 28 - 39
  • [43] Low-Rank and Sparse Representation for Hyperspectral Image Processing: A Review
    Peng, Jiangtao
    Sun, Weiwei
    Li, Heng-Chao
    Li, Wei
    Meng, Xiangchao
    Ge, Chiru
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (01) : 10 - 43
  • [44] Hyperspectral Image Classification with Low-Rank Subspace and Sparse Representation
    Sumarsono, Alex
    Du, Qian
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2864 - 2867
  • [45] Superpixel-Based Weighted Collaborative Sparse Regression and Reweighted Low-Rank Representation for Hyperspectral Image Unmixing
    Su, Hongjun
    Jia, Cailing
    Zheng, Pan
    Du, Qian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 393 - 408
  • [46] Low-Rank and Spectral-Spatial Sparse Unmixing for Hyperspectral Remote Sensing Imagery
    Li, Fan
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [47] Adaptive Total Variation Regularization for Weighted Low-Rank Tensor Sparse Hyperspectral Unmixing
    Xu, Chenguang
    IAENG International Journal of Applied Mathematics, 2024, 54 (11) : 2404 - 2417
  • [48] All of Low-Rank and Sparse: A Recast Total Variation Approach to Hyperspectral Denoising
    Zeng, Haijin
    Huang, Shaoguang
    Chen, Yongyong
    Luong, Hiep
    Philips, Wilfried
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 7357 - 7373
  • [49] Weighted Nonlocal Low-Rank Tensor Decomposition Method for Sparse Unmixing of Hyperspectral Images
    Sun, Le
    Wu, Feiyang
    Zhan, Tianming
    Liu, Wei
    Wang, Jin
    Jeon, Byeungwoo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 1174 - 1188
  • [50] Hyperspectral Image Denoising Based on Global and Nonlocal Low-Rank Factorizations
    Zhuang, Lina
    Fu, Xiyou
    Ng, Michael K.
    Bioucas-Dias, Jose M.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12): : 10438 - 10454